Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 5.428
Filter
Add filters

Year range
1.
AIP Conference Proceedings ; 2655, 2023.
Article in English | Scopus | ID: covidwho-20245510

ABSTRACT

The objective is to detect Novel Social Distancing using Local Binary Pattern (LBP) in comparison with Principal Component Analysis (PCA). Social Distance deduction is performed using Local Binary Pattern(N=20) and Principal Component Analysis(N=20) algorithms. Google AI open Images dataset is used for image detection. Dataset contains more than 10,000 images. Accuracy of Principal Component Analysis is 89.8% and Local Binary Pattern is 93.9%. There exists a statistical significant difference between LBP and PCA with (p<0.05). Local Binary Pattern appears to perform significantly better than Principal Component Analysis for Social Distancing Detection. © 2023 Author(s).

2.
Neural Comput Appl ; : 1-15, 2021 Sep 10.
Article in English | MEDLINE | ID: covidwho-20240352

ABSTRACT

Coronavirus (COVID-19) is a very contagious infection that has drawn the world's attention. Modeling such diseases can be extremely valuable in predicting their effects. Although classic statistical modeling may provide adequate models, it may also fail to understand the data's intricacy. An automatic COVID-19 detection system based on computed tomography (CT) scan or X-ray images is effective, but a robust system design is challenging. In this study, we propose an intelligent healthcare system that integrates IoT-cloud technologies. This architecture uses smart connectivity sensors and deep learning (DL) for intelligent decision-making from the perspective of the smart city. The intelligent system tracks the status of patients in real time and delivers reliable, timely, and high-quality healthcare facilities at a low cost. COVID-19 detection experiments are performed using DL to test the viability of the proposed system. We use a sensor for recording, transferring, and tracking healthcare data. CT scan images from patients are sent to the cloud by IoT sensors, where the cognitive module is stored. The system decides the patient status by examining the images of the CT scan. The DL cognitive module makes the real-time decision on the possible course of action. When information is conveyed to a cognitive module, we use a state-of-the-art classification algorithm based on DL, i.e., ResNet50, to detect and classify whether the patients are normal or infected by COVID-19. We validate the proposed system's robustness and effectiveness using two benchmark publicly available datasets (Covid-Chestxray dataset and Chex-Pert dataset). At first, a dataset of 6000 images is prepared from the above two datasets. The proposed system was trained on the collection of images from 80% of the datasets and tested with 20% of the data. Cross-validation is performed using a tenfold cross-validation technique for performance evaluation. The results indicate that the proposed system gives an accuracy of 98.6%, a sensitivity of 97.3%, a specificity of 98.2%, and an F1-score of 97.87%. Results clearly show that the accuracy, specificity, sensitivity, and F1-score of our proposed method are high. The comparison shows that the proposed system performs better than the existing state-of-the-art systems. The proposed system will be helpful in medical diagnosis research and healthcare systems. It will also support the medical experts for COVID-19 screening and lead to a precious second opinion.

3.
Pers Ubiquitous Comput ; : 1-13, 2021 Jan 26.
Article in English | MEDLINE | ID: covidwho-20238608

ABSTRACT

Stroke patients under the background of the new crown epidemic need to be home-based care. However, traditional nursing methods cannot take care of the patients' lives in all aspects. Based on this, based on machine learning algorithms, our work combines regression models and SVM to build a smart wearable device system and builds a system prediction module to predict patient care needs. The node is used to collect human body motion and physiological parameter information and transmit data wirelessly. The software is used to quickly process and analyze the various motion and physiological parameters of the patient and save the analysis and processing structure in the database. By comparing the results of nursing intervention experiments, we can see that the smart wearable device designed in this paper has a certain effect in stroke care.

4.
Cogn Neurodyn ; : 1-9, 2021 Nov 05.
Article in English | MEDLINE | ID: covidwho-20236515

ABSTRACT

The novel coronavirus disease, COVID-19, has rapidly spread worldwide. Developing methods to identify the therapeutic activity of drugs based on phenotypic data can improve the efficiency of drug development. Here, a state-of-the-art machine-learning method was used to identify drug mechanism of actions (MoAs) based on the cell image features of 1105 drugs in the  LINCS database. As the multi-dimensional features of cell images are affected by non-experimental factors, the characteristics of similar drugs vary considerably, and it is difficult to effectively identify the MoA of drugs as there is substantial noise. By applying the supervised information theoretic metric-learning (ITML) algorithm, a linear transformation made drugs with the same MoA aggregate. By clustering drugs to communities and performing enrichment analysis, we found that transferred image features were more conducive to the recognition of drug MoAs. Image features analysis showed that different features play important roles in identifying different drug functions. Drugs that significantly affect cell survival or proliferation, such as cyclin-dependent kinase inhibitors, were more likely to be enriched in communities, whereas other drugs might be decentralized. Chloroquine and clomiphene, which block the entry of virus, were clustered into the same community, indicating that similar MoA could be reflected by the cell image. Overall, the findings of the present study laid the foundation for the discovery of MoAs of new drugs, based on image data. In addition, it provided a new method of drug repurposing for COVID-19. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11571-021-09727-5.

5.
Expert Syst Appl ; 231: 120769, 2023 Nov 30.
Article in English | MEDLINE | ID: covidwho-20244095

ABSTRACT

COVID-19 has a disease and health phenomenon and has sociological and economic adverse effects. Accurate prediction of the spread of the epidemic will help in the planning of health management and the development of economic and sociological action plans. In the literature, there are many studies to analyse and predict the spread of COVID-19 in cities and countries. However, there is no study to predict and analyse the cross-country spread in the world's most populous countries. In this study, it was aimed to predict the spread of the COVID-19 epidemic. The motivation of this study is to reduce the workload of health workers, take preventive measures and optimize health processes by predicting the spread of the COVID-19 epidemic. A hybrid deep learning model was developed to predict and analyse COVID-19 cross-country spread and a case study was carried out for the world's most populous countries. The developed model was tested extensively using RMSE, MAE and R2. The experimental results showed that the developed model was more successful in predicting and analysis of COVID-19 cross-country spread in the world's most populous countries than LR, RF, SVM, MLP, CNN, GRU, LSTM and base CNN-GRU. In the developed model, CNN performs convolution and pooling operations to extract spatial features from the input data. GRU provides learning of long-term and non-linear relationships inferred by CNN. The developed hybrid model was more successful than the other models compared, as it enabled the effective features of the CNN and GRU models to be used together. The prediction and analysis of the cross-country spread of COVID-19 in the world's most populated countries can be presented as a novelty of this study.

6.
Int J Environ Res Public Health ; 20(11)2023 May 31.
Article in English | MEDLINE | ID: covidwho-20244000

ABSTRACT

Social distancing measures and shelter-in-place orders to limit mobility and transportation were among the strategic measures taken to control the rapid spreading of COVID-19. In major metropolitan areas, there was an estimated decrease of 50 to 90 percent in transit use. The secondary effect of the COVID-19 lockdown was expected to improve air quality, leading to a decrease in respiratory diseases. The present study examines the impact of mobility on air quality during the COVID-19 lockdown in the state of Mississippi (MS), USA. The study region is selected because of its non-metropolitan and non-industrial settings. Concentrations of air pollutants-particulate matter 2.5 (PM2.5), particulate matter 10 (PM10), ozone (O3), nitrogen oxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO)-were collected from the Environmental Protection Agency, USA from 2011 to 2020. Because of limitations in the data availability, the air quality data of Jackson, MS were assumed to be representative of the entire region of the state. Weather data (temperature, humidity, pressure, precipitation, wind speed, and wind direction) were collected from the National Oceanic and Atmospheric Administration, USA. Traffic-related data (transit) were taken from Google for the year 2020. The statistical and machine learning tools of R Studio were used on the data to study the changes in air quality, if any, during the lockdown period. Weather-normalized machine learning modeling simulating business-as-scenario (BAU) predicted a significant difference in the means of the observed and predicted values for NO2, O3, and CO (p < 0.05). Due to the lockdown, the mean concentrations decreased for NO2 and CO by -4.1 ppb and -0.088 ppm, respectively, while it increased for O3 by 0.002 ppm. The observed and predicted air quality results agree with the observed decrease in transit by -50.5% as a percentage change of the baseline, and the observed decrease in the prevalence rate of asthma in MS during the lockdown. This study demonstrates the validity and use of simple, easy, and versatile analytical tools to assist policymakers with estimating changes in air quality in situations of a pandemic or natural hazards, and to take measures for mitigating if the deterioration of air quality is detected.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , COVID-19/epidemiology , Nitrogen Dioxide/analysis , Mississippi/epidemiology , Communicable Disease Control , Air Pollution/analysis , Air Pollutants/analysis , Particulate Matter/analysis , Nitric Oxide , Environmental Monitoring/methods
7.
New Gener Comput ; 41(2): 243-280, 2023.
Article in English | MEDLINE | ID: covidwho-20243687

ABSTRACT

In today's digital world, information is growing along with the expansion of Internet usage worldwide. As a consequence, bulk of data is generated constantly which is known to be "Big Data". One of the most evolving technologies in twenty-first century is Big Data analytics, it is promising field for extracting knowledge from very large datasets and enhancing benefits while lowering costs. Due to the enormous success of big data analytics, the healthcare sector is increasingly shifting toward adopting these approaches to diagnose diseases. Due to the recent boom in medical big data and the development of computational methods, researchers and practitioners have gained the ability to mine and visualize medical big data on a larger scale. Thus, with the aid of integration of big data analytics in healthcare sectors, precise medical data analysis is now feasible with early sickness detection, health status monitoring, patient treatment, and community services is now achievable. With all these improvements, a deadly disease COVID is considered in this comprehensive review with the intention of offering remedies utilizing big data analytics. The use of big data applications is vital to managing pandemic conditions, such as predicting outbreaks of COVID-19 and identifying cases and patterns of spread of COVID-19. Research is still being done on leveraging big data analytics to forecast COVID-19. But precise and early identification of COVID disease is still lacking due to the volume of medical records like dissimilar medical imaging modalities. Meanwhile, Digital imaging has now become essential to COVID diagnosis, but the main challenge is the storage of massive volumes of data. Taking these limitations into account, a comprehensive analysis is presented in the systematic literature review (SLR) to provide a deeper understanding of big data in the field of COVID-19.

8.
Sensors (Basel) ; 23(11)2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-20243262

ABSTRACT

This study introduces a novel method for detecting the post-COVID state using ECG data. By leveraging a convolutional neural network, we identify "cardiospikes" present in the ECG data of individuals who have experienced a COVID-19 infection. With a test sample, we achieve an 87 percent accuracy in detecting these cardiospikes. Importantly, our research demonstrates that these observed cardiospikes are not artifacts of hardware-software signal distortions, but rather possess an inherent nature, indicating their potential as markers for COVID-specific modes of heart rhythm regulation. Additionally, we conduct blood parameter measurements on recovered COVID-19 patients and construct corresponding profiles. These findings contribute to the field of remote screening using mobile devices and heart rate telemetry for diagnosing and monitoring COVID-19.


Subject(s)
COVID-19 , Electrocardiography , Humans , COVID-19/diagnosis , Algorithms , Neural Networks, Computer , Machine Learning
9.
Healthcare (Basel) ; 11(10)2023 May 18.
Article in English | MEDLINE | ID: covidwho-20243009

ABSTRACT

Since 2016, there has been a substantial rise in e-cigarette (vaping) dependence among young people. In this prospective cohort study, we aimed to identify the different predictors of vaping dependence over 3 months among adolescents who were baseline daily and non-daily vapers. We recruited ever-vaping Canadian residents aged 16-25 years on social media platforms and asked them to complete a baseline survey in November 2020. A validated vaping dependence score (0-23) summing up their responses to nine questions was calculated at the 3-month follow-up survey. Separate lasso regression models were developed to identify predictors of higher 3-month vaping dependence score among baseline daily and non-daily vapers. Of the 1172 participants, 643 (54.9%) were daily vapers with a mean age of 19.6 ± 2.6 years and 76.4% (n = 895) of them being female. The two models achieved adequate predictive performance. Place of last vape purchase, number of days a pod lasts, and the frequency of nicotine-containing vaping were the most important predictors for dependence among daily vapers, while race, sexual orientation and reporting treatment for heart disease were the most important predictors in non-daily vapers. These findings have implications for vaping control policies that target adolescents at different stages of vape use.

10.
BMJ Open ; 13(4): e069255, 2023 04 26.
Article in English | MEDLINE | ID: covidwho-20242945

ABSTRACT

INTRODUCTION: Managing violence or aggression is an ongoing challenge in emergency psychiatry. Many patients identified as being at risk do not go on to become violent or aggressive. Efforts to automate the assessment of risk involve training machine learning (ML) models on data from electronic health records (EHRs) to predict these behaviours. However, no studies to date have examined which patient groups may be over-represented in false positive predictions, despite evidence of social and clinical biases that may lead to higher perceptions of risk in patients defined by intersecting features (eg, race, gender). Because risk assessment can impact psychiatric care (eg, via coercive measures, such as restraints), it is unclear which patients might be underserved or harmed by the application of ML. METHODS AND ANALYSIS: We pilot a computational ethnography to study how the integration of ML into risk assessment might impact acute psychiatric care, with a focus on how EHR data is compiled and used to predict a risk of violence or aggression. Our objectives include: (1) evaluating an ML model trained on psychiatric EHRs to predict violent or aggressive incidents for intersectional bias; and (2) completing participant observation and qualitative interviews in an emergency psychiatric setting to explore how social, clinical and structural biases are encoded in the training data. Our overall aim is to study the impact of ML applications in acute psychiatry on marginalised and underserved patient groups. ETHICS AND DISSEMINATION: The project was approved by the research ethics board at The Centre for Addiction and Mental Health (053/2021). Study findings will be presented in peer-reviewed journals, conferences and shared with service users and providers.


Subject(s)
Inpatients , Psychiatry , Humans , Inpatients/psychology , Violence/prevention & control , Violence/psychology , Aggression/psychology , Anthropology, Cultural
11.
Int J Environ Res Public Health ; 20(11)2023 May 24.
Article in English | MEDLINE | ID: covidwho-20242790

ABSTRACT

The global economy has suffered losses as a result of the COVID-19 epidemic. Accurate and effective predictive models are necessary for the governance and readiness of the healthcare system and its resources and, ultimately, for the prevention of the spread of illness. The primary objective of the project is to build a robust, universal method for predicting COVID-19-positive cases. Collaborators will benefit from this while developing and revising their pandemic response plans. For accurate prediction of the spread of COVID-19, the research recommends an adaptive gradient LSTM model (AGLSTM) using multivariate time series data. RNN, LSTM, LASSO regression, Ada-Boost, Light Gradient Boosting and KNN models are also used in the research, which accurately and reliably predict the course of this unpleasant disease. The proposed technique is evaluated under two different experimental conditions. The former uses case studies from India to validate the methodology, while the latter uses data fusion and transfer-learning techniques to reuse data and models to predict the onset of COVID-19. The model extracts important advanced features that influence the COVID-19 cases using a convolutional neural network and predicts the cases using adaptive LSTM after CNN processes the data. The experiment results show that the output of AGLSTM outperforms with an accuracy of 99.81% and requires only a short time for training and prediction.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , India , Learning , Pandemics , Machine Learning
12.
Gigascience ; 122022 12 28.
Article in English | MEDLINE | ID: covidwho-20242676

ABSTRACT

BACKGROUND: Literature about SARS-CoV-2 widely discusses the effects of variations that have spread in the past 3 years. Such information is dispersed in the texts of several research articles, hindering the possibility of practically integrating it with related datasets (e.g., millions of SARS-CoV-2 sequences available to the community). We aim to fill this gap, by mining literature abstracts to extract-for each variant/mutation-its related effects (in epidemiological, immunological, clinical, or viral kinetics terms) with labeled higher/lower levels in relation to the nonmutated virus. RESULTS: The proposed framework comprises (i) the provisioning of abstracts from a COVID-19-related big data corpus (CORD-19) and (ii) the identification of mutation/variant effects in abstracts using a GPT2-based prediction model. The above techniques enable the prediction of mutations/variants with their effects and levels in 2 distinct scenarios: (i) the batch annotation of the most relevant CORD-19 abstracts and (ii) the on-demand annotation of any user-selected CORD-19 abstract through the CoVEffect web application (http://gmql.eu/coveffect), which assists expert users with semiautomated data labeling. On the interface, users can inspect the predictions and correct them; user inputs can then extend the training dataset used by the prediction model. Our prototype model was trained through a carefully designed process, using a minimal and highly diversified pool of samples. CONCLUSIONS: The CoVEffect interface serves for the assisted annotation of abstracts, allowing the download of curated datasets for further use in data integration or analysis pipelines. The overall framework can be adapted to resolve similar unstructured-to-structured text translation tasks, which are typical of biomedical domains.


Subject(s)
COVID-19 , Deep Learning , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Mutation , Kinetics
13.
J Ambient Intell Humaniz Comput ; : 1-13, 2023 May 27.
Article in English | MEDLINE | ID: covidwho-20242548

ABSTRACT

The spread of health misinformation has the potential to cause serious harm to public health, from leading to vaccine hesitancy to adoption of unproven disease treatments. In addition, it could have other effects on society such as an increase in hate speech towards ethnic groups or medical experts. To counteract the sheer amount of misinformation, there is a need to use automatic detection methods. In this paper we conduct a systematic review of the computer science literature exploring text mining techniques and machine learning methods to detect health misinformation. To organize the reviewed papers, we propose a taxonomy, examine publicly available datasets, and conduct a content-based analysis to investigate analogies and differences among Covid-19 datasets and datasets related to other health domains. Finally, we describe open challenges and conclude with future directions.

14.
Geohealth ; 7(6): e2022GH000771, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-20242391

ABSTRACT

The factors influencing the incidence of COVID-19, including the impact of the vaccination programs, have been studied in the literature. Most studies focus on one or two factors, without considering their interactions, which is not enough to assess a vaccination program in a statistically robust manner. We examine the impact of the U.S. vaccination program on the SARS-CoV-2 positivity rate while simultaneously considering a large number of factors involved in the spread of the virus and the feedbacks among them. We consider the effects of the following sets of factors: socioeconomic factors, public policy factors, environmental factors, and non-observable factors. A time series Error Correction Model (ECM) was used to estimate the impact of the vaccination program at the national level on the positivity rate. Additionally, state-level ECMs with panel data were combined with machine learning techniques to assess the impact of the program and identify relevant factors to build the best-fitting models. We find that the vaccination program reduced the virus positivity rate. However, the program was partially undermined by a feedback loop in which increased vaccination led to increased mobility. Although some external factors reduced the positivity rate, the emergence of new variants increased the positivity rate. The positivity rate was associated with several forces acting simultaneously in opposite directions such as the number of vaccine doses administered and mobility. The existence of complex interactions, between the factors studied, implies that there is a need to combine different public policies to strengthen the impact of the vaccination program.

15.
Yakugaku Zasshi ; 143(6): 491-495, 2023.
Article in Japanese | MEDLINE | ID: covidwho-20242312

ABSTRACT

Recent developments have enabled daily accumulated medical information to be converted into medical big data, and new evidence is expected to be created using databases and various open data sources. Database research using medical big data was actively conducted in the coronavirus disease 2019 (COVID-19) pandemic and created evidence for a new disease. Conversely, the new term "infodemic" has emerged and has become a social problem. Multiple posts on social networking services (SNS) overly stirred up safety concerns about the COVID-19 vaccines based on the analysis results of the Vaccine Adverse Event Reporting System (VAERS). Medical experts on SNS have attempted to correct these misunderstandings. Incidents where research papers about the COVID-19 treatment using medical big data were retracted due to the lack of reliability of the database also occurred. These topics of appropriate interpretation of results using spontaneous reporting databases and ensuring the reliability of databases are not new issues that emerged during the COVID-19 pandemic but issues that were present before. Thus, literacy regarding medical big data has become increasingly important. Research related to artificial intelligence (AI) is also progressing rapidly. Using medical big data is expected to accelerate AI development. However, as medical AI does not resolve all clinical setting problems, we also need to improve our medical AI literacy.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Big Data , COVID-19 Vaccines , Pandemics/prevention & control , COVID-19 Drug Treatment , Literacy , Reproducibility of Results
16.
BMC Health Serv Res ; 23(1): 544, 2023 May 25.
Article in English | MEDLINE | ID: covidwho-20241910

ABSTRACT

BACKGROUND: Pandemics such as the COVID-19 pandemic and other severe health care disruptions endanger individuals to miss essential care. Machine learning models that predict which patients are at greatest risk of missing care visits can help health administrators prioritize retentions efforts towards patients with the most need. Such approaches may be especially useful for efficiently targeting interventions for health systems overburdened during states of emergency. METHODS: We use data on missed health care visits from over 55,500 respondents of the Survey of Health, Ageing and Retirement in Europe (SHARE) COVID-19 surveys (June - August 2020 and June - August 2021) with longitudinal data from waves 1-8 (April 2004 - March 2020). We compare the performance of four machine learning algorithms (stepwise selection, lasso, random forest, and neural networks) to predict missed health care visits during the first COVID-19 survey based on common patient characteristics available to most health care providers. We test the prediction accuracy, sensitivity, and specificity of the selected models for the first COVID-19 survey by employing 5-fold cross-validation, and test the out-of-sample performance of the models by applying them to the data from the second COVID-19 survey. RESULTS: Within our sample, 15.5% of the respondents reported any missed essential health care visit due to the COVID-19 pandemic. All four machine learning methods perform similarly in their predictive power. All models have an area under the curve (AUC) of around 0.61, outperforming random prediction. This performance is sustained for data from the second COVID-19 wave one year later, with an AUC of 0.59 for men and 0.61 for women. When classifying all men (women) with a predicted risk of 0.135 (0.170) or higher as being at risk of missing care, the neural network model correctly identifies 59% (58%) of the individuals with missed care visits, and 57% (58%) of the individuals without missed care visits. As the sensitivity and specificity of the models are strongly related to the risk threshold used to classify individuals, the models can be calibrated depending on users' resource constraints and targeting approach. CONCLUSIONS: Pandemics such as COVID-19 require rapid and efficient responses to reduce disruptions in health care. Based on characteristics available to health administrators or insurance providers, simple machine learning algorithms can be used to efficiently target efforts to reduce missed essential care.


Subject(s)
COVID-19 , Male , Humans , Female , COVID-19/epidemiology , Pandemics , Sensitivity and Specificity , Machine Learning , Delivery of Health Care
17.
Multimed Tools Appl ; : 1-28, 2023 May 27.
Article in English | MEDLINE | ID: covidwho-20241020

ABSTRACT

Deep Learning and Machine Learning are becoming more and more popular as their algorithms get progressively better, and their use is expected to have the large effect on improving the health care system. Also, the pandemic was a chance to show how adding AI to healthcare infrastructure could help, since infrastructures around the world are overworked and falling apart. These new technologies can be used to fight COVID-19 because they are flexible and can be changed. Based on these facts, we looked at how the ML and DL-based models can be used to deal with the COVID-19 pandemic problem and what the pros and cons of each are. This paper gives a full look at the different ways to find COVID-19. We looked at the COVID-19 issues in a systematic way and then rated the methods and techniques for finding it based on their availability, ease of use, accuracy, and cost. We have also shown in pictures how well each of the detection techniques works. We did a comparison of different detection models based on the above factors. This helps researchers understand the different methods and the pros and cons of using them as the basis for their research. In the last part, we talk about the open challenges and research questions that come with putting these techniques together with other detection methods.

18.
Healthcare (Basel) ; 11(10)2023 May 19.
Article in English | MEDLINE | ID: covidwho-20240493

ABSTRACT

Loneliness is an issue of public health significance. Longitudinal studies indicate that feelings of loneliness are prevalent and were exacerbated by the Coronavirus Disease 2019 (COVID-19) pandemic. With the advent of new media, more people are turning to social media platforms such as Twitter and Reddit as well as online forums, e.g., loneliness forums, to seek advice and solace regarding their health and well-being. The present study therefore aimed to investigate the public messaging on loneliness via an unsupervised machine learning analysis of posts made by organisations on Twitter. We specifically examined tweets put out by organisations (companies, agencies or common interest groups) as the public may view them as more credible information as opposed to individual opinions. A total of 68,345 unique tweets in English were posted by organisations on Twitter from 1 January 2012 to 1 September 2022. These tweets were extracted and analysed using unsupervised machine learning approaches. BERTopic, a topic modelling technique that leverages state-of-the-art natural language processing, was applied to generate interpretable topics around the public messaging of loneliness and highlight the key words in the topic descriptions. The topics and topic labels were then reviewed independently by all study investigators for thematic analysis. Four key themes were uncovered, namely, the experience of loneliness, people who experience loneliness, what exacerbates loneliness and what could alleviate loneliness. Notably, a significant proportion of the tweets centred on the impact of the COVID-19 pandemic on loneliness. While current online interactions are largely descriptive of the complex and multifaceted problem of loneliness, more targeted prosocial messaging appears to be lacking to combat the causes of loneliness brought up in public messaging.

19.
Neural Comput Appl ; : 1-29, 2023 May 27.
Article in English | MEDLINE | ID: covidwho-20240081

ABSTRACT

The spread of the COVID-19 started back in 2019; and so far, more than 4 million people around the world have lost their lives to this deadly virus and its variants. In view of the high transmissibility of the Corona virus, which has turned this disease into a global pandemic, artificial intelligence can be employed as an effective tool for an earlier detection and treatment of this illness. In this review paper, we evaluate the performance of the deep learning models in processing the X-Ray and CT-Scan images of the Corona patients' lungs and describe the changes made to these models in order to enhance their Corona detection accuracy. To this end, we introduce the famous deep learning models such as VGGNet, GoogleNet and ResNet and after reviewing the research works in which these models have been used for the detection of COVID-19, we compare the performances of the newer models such as DenseNet, CapsNet, MobileNet and EfficientNet. We then present the deep learning techniques of GAN, transfer learning, and data augmentation and examine the statistics of using these techniques. Here, we also describe the datasets introduced since the onset of the COVID-19. These datasets contain the lung images of Corona patients, healthy individuals, and the patients with non-Corona pulmonary diseases. Lastly, we elaborate on the existing challenges in the use of artificial intelligence for COVID-19 detection and the prospective trends of using this method in similar situations and conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s00521-023-08683-x.

20.
Front Pediatr ; 11: 1149125, 2023.
Article in English | MEDLINE | ID: covidwho-20239958

ABSTRACT

Background: The influence of pediatricians on parental acceptance of COVID-19 vaccine for children has not been well studied. We designed a survey to estimate the impact of pediatricians' recommendations on caregivers' vaccine acceptance while accounting for participants' socio-demographic and personal characteristics. The secondary objectives were to compare childhood vaccination rates among different age groups and categorize caregivers' concerns about vaccinating young (under-five) children. Overall, the study aimed to provide insight into potential pro-vaccination strategies that could integrate pediatricians to alleviate parental vaccine hesitancy. Methods: We conducted an online cross-sectional survey study using Redcap, in August 2022. We enquired COVID-19 vaccination status of the children in the family (≥five years). The survey questionnaire included socio-demographic and personal characteristics: age, race, sex, education, financial status, residence, healthcare worker, COVID-19 vaccination status and side effects, children's influenza vaccination status, and pediatricians' recommendations (1-5 scale). Logistic regression and neural network models were used to estimate the influence of socio-demographic determinants on children's vaccine status and build predictors' ranking. Results: The participants (N = 2,622) were predominantly white, female, middle-class, and vaccinated against COVID-19 (89%). The logistic regression model was significant vs. the null (likelihood-ratio χ2 = 514.57, p < 0.001, pseudo-R2 = .440). The neural network model also demonstrated strong prediction ability with a correct prediction rates of 82.9% and 81.9% for the training and testing models, respectively. Both models identified pediatricians' recommendations, self-COVID-19 vaccination status, and post-vaccination side effects as dominant predictors of caregivers' vaccine acceptance. Among the pediatricians, 70.48% discussed and had an affirmative opinion about COVID-19 vaccine for children. Vaccine acceptance was lower for children aged 5-8 years compared to older age groups (9-12 and 13-18 years), and acceptance varied significantly among the three cohorts of children (χ2 = 65.62, p < 0.001). About half of the participants were concerned about inadequate availability of vaccine safety information for under-five children. Conclusions: Pediatricians' affirmative recommendation was significantly associated with caregivers' COVID-19 vaccine acceptance for children while accounting for participants' socio-demographic characteristics. Notably, vaccine acceptance was lower among younger compared to older children, and caregivers' uncertainty about vaccine safety for under-five children was prevalent. Thus, pro-vaccination strategies might incorporate pediatricians to alleviate parental concerns and optimize poor vaccination rate among under-five children.

SELECTION OF CITATIONS
SEARCH DETAIL