ABSTRACT
Wild meat hunting and trade across African savannas is widespread. We interviewed 299 people in rural settlements along the Kenya-Tanzania border to examine impacts of COVID-19 on wild meat consumption and perceptions about wild meat activities associated with zoonotic disease risks. Education level played a key part in understanding COVID-19 transmission. Information about the pandemic was mostly acquired from the media. Nearly all respondents recognized that COVID-19 originated in China. As many as 70% reported no impact of COVID-19 on wild meat consumption;some believed that there was an increase. Over half of the respondents believed that consumption of wild meat leads to food-borne illnesses. Respondents recognized disease risks such as anthrax and brucellosis and accepted that people slaughtering and handling wild meat with open cuts were at greater risk. Ungulates were the most consumed animals, followed by birds, rodents, and shrews. Respondents perceived that hyenas, monkeys, donkeys, and snakes were riskier to eat. More than 90% of the respondents understood that handwashing with soap reduces risks of disease transmission. Country level (11 answers), education and gender (three answers each) and household economy (158 answers) were significant. Country differences were linked to differences in nature legislation;50% of Kenyan respondents believed that wild meat should not be sold because of conservation concerns. Men were more worried about getting COVID-19 from live animals and perceived that wildlife should not be sold because of conservation reasons. Overall, there was a very strong inclination to stop buying wild meat if other meats were less expensive. Our results allow us to better understand the impact of the COVID-19 pandemic on wild meat-related activities. Differences between countries can frame the attitudes to wild meat since wild meat trade and consumption were found to be country specific.
ABSTRACT
Recently, the spread of the coronavirus disease 2019 (COVID-19) has increased among workers of meat processing plants (MPPs) around the world. This study reviewed the possible routes of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and useful actions against it in slaughterhouses. The results revealed that the main factors for the spread of the virus included low indoor temperature, crowded area, wrong standing along production lines, contamination of high-touch surfaces, difficult education of workers with diverse native languages, low financial income, large MPPs with over 10 million Ib of packed meat per month, higher speed of production lines with 175 birds/minute, temporary contract of the workers, and weak approach of some meat processing companies against COVID-19 infection such as National Beef. COVID-19 transmission rate was 24 times higher among the workers of MPPs than among the population of the US. The practical actions against the spread of the virus were mainly marker using for remembering the previous location, mandatory mask use, especially FFP2/3 masks, and decentralization of large MPPs. By using the results of this study, slaughterhouse managers would be able to significantly control the spread of SARS-CoV-2 and future bio-threats to workers of MPPs and even to society. © 2022 The Author(s);.
ABSTRACT
In May 2020, 2 months after COVID-19 arrived in the High Plains of Texas, meatpacking plant workers were discovered to be contracting the virus in large numbers. Working conditions in the plants-close spacing on the disassembly lines, cold temperatures, noise (shouting to be heard), etc.;along with congregant settings among the immigrant workers before and after work-were all implicated in the infections. Although much has been written on the vulnerabilities of meatpacking workers, little research has investigated the spatial spread of the virus. In this study we analyze COVID-19 case rates for May 15 (the first spike in daily case numbers), for the 41 counties of the region in relation to meat-packing influence, ethnicity, and socioeconomic structure of the counties. We find that meatpacking influence had the strongest relationship to COVID-19 rates across the counties;that the presence of Asian and African immigrants was also significant;and that rurality and isolation insulated more than half the counties from high virus rates. Further analysis, for later spikes in cases (July 1 and November 25), revealed a decline in meatpacking influence, a surge in COVID-19‘s infection of counties with large domestic minorities, and an amplification of low COVID-19 cases for rural, older, Anglo counties. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2022.
ABSTRACT
Swine acute diarrhea syndrome coronavirus (SADS-CoV), a newly discovered enteric coronavirus, is the etiological agent that causes severe clinical diarrhea and intestinal pathological damage in piglets. In this study, Vero E6 and IPI-2I cells were pretreated with different concentrations of glycyrrhizin (GLY) for 2 hours, and then infected with different concentrations of SADSCoV, aiming to investigate the inhibitory effect of GLY on SADS-CoV. Western blot and TCID50 results revealed a significantly decreased N protein expression and viral titer, indicating that GLY can inhibit the infection of SADS-CoV. Vero E6 and IPI-2I cells were pretreated with different concentrations of GLY for 2 hours and infected with SADS-CoV. Western blot results showed that when the concentration of GLY was 0.8 mmol/L, the expression of N protein decreased significantly, indicating that GLY inhibited the invasion of the virus. At first, cells were treated with 0.4 mmol/L GLY, and cell samples were collected at 2 hours, 6 hours and 12 hours after being infected with SADS-CoV for analysis, and the expression of N protein were found to be significantly reduced at all points, indicating that GLY had a significant inhibitory effect on the replication of the virus. GLY is a competitive inhibitor of high mobility group box 1 (HMGB1), and the receptors of HMGB1 mainly include TLR4 and RAGE. Based on this fact, the mutant plasmid at the key sites of HMGB1 (C45S, C106S, C45/106S) and the siRNA of the RAGE receptor were transfected to Vero E6 cells and infected with SADS-CoV, and the cell supernatant and samples were harvested. The western blot and TCID50 results showed that the expression of N protein and the virus titer were decreased, suggesting that GLY exerts its function by affecting the binding of HMGB1/TLR4/RAGE during SADS-CoV infection. To further explore the signaling pathway through which GLY functions, Vero E6 and IPI-2I cells were inoculated with SADS-CoV, and cell samples were harvested, western blot was used to detect the changes of MAPK proteins. The results showed that the protein expression levels of p-p38, p-JNK and p-ERK were up-regulated in the early and late stages, indicating that the MAPK pathway was activated by SADS-CoV infection. Vero E6 and IPI-2I were pretreated with different concentrations of GLY and TLR4 inhibitor TAK for 2 hours and infected with SADS-CoV. Protein samples were harvested and analysed by western blot which showed a decreased p-JNK and N proteins, while other proteins showed no significant changes. These results indicated that GLY and TAK regulated the phosphorylation of JNK but did not regulate the phosphorylation of p38 and ERK. Also, Vero E6 cells were treated with HMGB1 antibody, the siRNA of HMGB1 and HMGB1 mutants plasmid, and infected with SADS-CoV. Protein samples were harvested, western blot results showed that phosphorylation of JNK decreased, indicating that HMGB1 affected JNK phosphorylation. Finally, Vero E6 and IPI-2I cells were pretreated with different concentrations of JNK inhibitor SP600125 to infect SADS-CoV, western blot, TCID50 and IFA results showed that the expression of N protein and virus titer, as well as virus replication were reduced, indicating that SP600125 inhibited virus replication. In conclusion, our results revealed that GLY can inhibit in vitro replication of SADS- CoV, mainly through the HMGB1/TLR4/JNK signaling pathway. The discovery of this pathway provides theoretical support for the research of novel anti-SADS-CoV drugs.