Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
ACS Sens ; 8(4): 1648-1657, 2023 04 28.
Article in English | MEDLINE | ID: covidwho-2305204

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 variants play an important role in predicting patient outcome during postinfection, and with growing fears of COVID-19 reservoirs in domestic and wild animals, it is necessary to adapt detection systems for variant detection. However, variant-specific detection remains challenging. Surface-enhanced Raman scattering is a sensitive and multiplexing technique that allows the simultaneous detection of multiple targets for accurate identification. Here we propose the development of a multiplex SERS microassay to detect both the spike and nucleocapsid structural proteins of SARS-CoV-2. The designed SERS microassay integrates gold-silver hollow nanobox barcodes and electrohydrodynamically induced nanomixing which in combination enables highly specific and sensitive detection of SARS-CoV-2 and the S-protein epitopes to delineate between ancestral prevariant strains with the newer variants of concern, Delta and Omicron. The microassay allows detection from as low as 20 virus/µL and 50 pg/mL RBD protein and can clearly identify the virus among infected versus healthy nasopharyngeal swabs, with the potential to identify between variants. The detection of both S- and N-proteins of SARS-CoV-2 and the differentiation of variants on the SERS microassay can aid the early detection of COVID-19 to reduce transmission rates and lead into adequate treatments for those severely affected by the virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/diagnosis , Epitopes , Gold , Nucleocapsid Proteins
3.
Sens Actuators B Chem ; 380: 133331, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2165859

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has threatened public health globally, and the emergence of viral variants has exacerbated an already precarious situation. To prevent further spread of the virus and determine government action required for virus control, accurate and rapid immunoassays for SARS-CoV-2 diagnosis are urgently needed. In this study, we generated monoclonal antibodies (mAbs) against the SARS-CoV-2 nucleocapsid protein (NP), compared their reactivity using an enzyme-linked immunosorbent assay (ELISA), and selected four mAbs designated 1G6, 3E10, 3F10, and 5B6 which have higher reactivity to NP and viral lysates of SARS-CoV-2 than other mAbs. Using an epitope mapping assay, we identified that 1G6 detected the C-terminal domain of SARS-CoV-2 NP (residues 248-364), while 3E10 and 3F10 bound to the N-terminal domain (residues 47-174) and 3F10 detected the N-arm region (residues 1-46) of SARS-CoV-2 NP. Based on the epitope study and sandwich ELISA, we selected the 1G6 and 3E10 Abs as an optimal Ab pair and applied them for a microfluidics-based point-of-care (POC) ELISA assay to detect the NPs of SARS-CoV-2 and its variants. The integrated and automatic microfluidic system could operate the serial injection of the sample, the washing solution, the HRP-conjugate antibody, and the TMB substrate solution simply by controlling air purge via a single syringe. The proposed Ab pair-equipped microsystem effectively detected the NPs of SARS-CoV-2 variants as well as in clinical samples. Collectively, our proposed platform provides an advanced protein-based diagnostic tool for detecting SARS-CoV-2.

5.
Food Environ Virol ; 14(4): 364-373, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1943286

ABSTRACT

Development of lab-on-a-chip (LOC) system based on integration of reverse transcription loop-mediated isothermal amplification (RT-LAMP) and microfluidic technology is expected to speed up SARS-CoV-2 diagnostics allowing early intervention. In the current work, reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and RT-LAMP assays were performed on extracted RNA of seven wastewater samples from COVID-19 hotspots. RT­LAMP assay was also performed on wastewater samples without RNA extraction. Current detection of SARS-CoV-2 is mainly by RT-qPCR of ORF (ORF1ab) and N genes so we targeted both to find the best target gene for SARS-CoV-2 detection. We also performed RT-LAMP with/without RNA extraction inside microfluidic device to target both genes. Positivity rates of RT-qPCR and RT-LAMP performed on extracted RNA were 100.0% (7/7) and 85.7% (6/7), respectively. RT-qPCR results revealed that all 7 wastewater samples were positive for N gene (Ct range 37-39), and negative for ORF1ab, suggesting that N gene could be the best target gene for SARS-CoV-2 detection. RT-LAMP of N and ORF (ORF1a) genes performed on wastewater samples without RNA extraction indicated that all 7 samples remains pink (negative). The color remains pink in all microchannels except microchannels which subjected to RT-LAMP for targeting N region after RNA extraction (yellow color) in 6 out of 7 samples. This study shows that SARS-CoV-2 was successfully detected from wastewater samples using RT-LAMP in microfluidic chips. This study brings the novelty involving the use of wastewater samples for detection of SARS-CoV-2 without previous virus concentration and with/without RNA extraction.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Wastewater , COVID-19/diagnosis , COVID-19 Testing , Point-of-Care Systems , Microfluidics , Sensitivity and Specificity , RNA
7.
Chemosensors ; 10(4):17, 2022.
Article in English | Web of Science | ID: covidwho-1820181
8.
J Control Release ; 344: 80-96, 2022 04.
Article in English | MEDLINE | ID: covidwho-1693301

ABSTRACT

In 2021, mRNA vaccines against COVID-19 were approved by the Food and Drug Administration. mRNA vaccines are important for preventing severe COVID-19 and returning to normal life. The development of RNA-delivery technology, including mRNA vaccines, has been investigated worldwide for ~30 years. Lipid nanoparticles (LNPs) are a breakthrough technology that stably delivers RNA to target organs, and RNA-loaded LNP-based nanomedicines have been studied for the development of vaccines and nanomedicines for RNA-, gene-, and cell-based therapies. Recently, microfluidic devices and technologies have attracted attention for the production of LNPs, particularly RNA-loaded LNPs. Microfluidics provides many advantages for RNA-loaded LNP production, including precise LNP size controllability, high reproducibility, high-throughput optimization of LNP formulation, and continuous LNP-production processes. In this review, we summarize microfluidic-based RNA-loaded LNP production and its applications in RNA-based therapy and genome editing.


Subject(s)
COVID-19 , Nanoparticles , COVID-19 Vaccines , Humans , Lipids , Liposomes , Microfluidics , RNA, Small Interfering/genetics , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL