ABSTRACT
The COVID-19 pandemic highlighted a major flaw in the current medical oxygen supply chain and inventory management system. This shortcoming caused the deaths of several patients which could have been avoided by accurate prediction of the oxygen demand and the distribution of oxygen cylinders. To avoid such calamities in the future, this paper proposes an Internet of Everything (IoE) based solution which forecasts the demand for oxygen with 80-85% accuracy. The predicted variable of expected patients enables the system to calculate the requirement of oxygen up to the next 30 days from the initiation of data collection. The system is scalable and if implemented on a city or district level, will help in the fair distribution of medical oxygen resources and will save human lives during extreme load on the supply chain. © 2023 IEEE.
ABSTRACT
To treat the novel COronaVIrus Disease (COVID), comparatively fewer medicines have been approved. Due to the global pandemic status of COVID, several medicines are being developed to treat patients. The modern COVID medicines development process has various challenges, including predicting and detecting hazardous COVID medicine responses. Moreover, correctly predicting harmful COVID medicine reactions is essential for health safety. Significant developments in computational models in medicine development can make it possible to identify adverse COVID medicine reactions. Since the beginning of the COVID pandemic, there has been significant demand for developing COVID medicines. Therefore, this paper presents the transfer-learning methodology and a multilabel convolutional neural network for COVID (MLCNN-COV) medicines development model to identify negative responses of COVID medicines. For analysis, a framework is proposed with five multilabel transfer-learning models, namely, MobileNetv2, ResNet50, VGG19, DenseNet201, and Inceptionv3, and an MLCNN-COV model is designed with an image augmentation (IA) technique and validated through experiments on the image of three-dimensional chemical conformer of 17 number of COVID medicines. The RGB color channel is utilized to represent the feature of the image, and image features are extracted by employing the Convolution2D and MaxPooling2D layer. The findings of the current MLCNN-COV are promising, and it can identify individual adverse reactions of medicines, with the accuracy ranging from 88.24% to 100%, which outperformed the transfer-learning model's performance. It shows that three-dimensional conformers adequately identify negative COVID medicine responses. 1225-6463/$ © 2023 ETRI.
ABSTRACT
The impact of the COVID pandemic has resulted in many people cultivating a remote working culture and increasing building energy use. A reduction in the energy use of heating, ventilation, and air-conditioning (HVAC) systems is necessary for decreasing the energy use in buildings. The refrigerant charge of a heat pump greatly affects its energy use. However, refrigerant leakage causes a significant increase in the energy use of HVAC systems. The development of refrigerant charge fault detection models is, therefore, important to prevent unwarranted energy consumption and CO2 emissions in heat pumps. This paper examines refrigerant charge faults and their effect on a variable speed heat pump and the most accurate method between a multiple linear regression and multilayer perceptron model to use in detecting the refrigerant charge fault using the discharge temperature of the compressor, outdoor entering water temperature and compressor speed as inputs, and refrigerant charge as the output. The COP of the heat pump decreased when it was not operating at the optimum refrigerant charge, while an increase in compressor speed compensated for the degradation in the capacity during refrigerant leakage. Furthermore, the multilayer perception was found to have a higher prediction accuracy of the refrigerant charge fault with a mean square error of ± 3.7%, while the multiple linear regression model had a mean square error of ± 4.5%. The study also found that the multilayer perception model requires 7 neurons in the hidden layer to make viable predictions on any subsequent test sets fed into it under similar experimental conditions and parameters of the heat pump used in this study.
ABSTRACT
The healthcare sector is very interested in machine learning (ML) and artificial intelligence (AI). Nevertheless, applying AI applications in scientific contexts is difficult due to explainability issues. Explainable AI (XAI) has been studied as a potential remedy for the problems with current AI methods. The usage of ML with XAI may be capable of both explaining models and making judgments, in contrast to AI techniques like deep learning. Computer applications called medical decision support systems (MDSS) affect the decisions doctors make regarding certain patients at a specific moment. MDSS has played a crucial role in systems' attempts to improve patient safety and the standard of care, particularly for non-communicable illnesses. They have moreover been a crucial prerequisite for effectively utilizing electronic healthcare (EHRs) data. This chapter offers a broad overview of the application of XAI in MDSS toward various infectious diseases, summarizes recent research on the use and effects of MDSS in healthcare with regard to non-communicable diseases, and offers suggestions for users to keep in mind as these systems are incorporated into healthcare systems and utilized outside of contexts for research and development.
ABSTRACT
The virus SARS-CoV2 was identified in late 2019. Coronavirus Disease 2019 (COVID-19) is still a threat to global health and safety. Deep Learning (DL) is anticipated to be the most excellent strategy for reliably predicting COVID-19. Convolutional Neural Networks(CNNs) have achieved successful outcomes particularly in categorization and analyzing of medical image data. This work proposes a Deep CNN(DCNN) method for the classification of CX-R(Chest X-Ray) images in prediction of COVID-19. The dataset is preprocessed under many phases with different techniques for creating effective training dataset for the DCNN model to achieve best performance. This is done to deal various complexities like availability of very small sized imbalanced dataset with quality issues. In the first instance, model is trained using the train dataset. Then the model is tested for a separate validate X-ray image dataset and Confusion matrix is displayed. Up to 98.3% Accuracy is obtained, when proposed model was tested using the validate dataset. The Accuracy and Loss graph is plotted for the same. Later, random image prediction is made from prediction dataset which include both COVID and Normal X-rays. Other important performance metrics like F1 score, Recall, Precision for the model is displayed. © 2023 IEEE.
ABSTRACT
Computational medicine has emerged due to the advances in medical technology in parallel with big data and artificial intelligence. A new way of treating complex diseases is evolving called 'Precision Medicine' fueled by big data extracting meaningful information from individual variability. At the forefront is biomedical research aiming to promote the area of precision medicine. Though traditional machine learning methods have built successful models for cancer diagnosis to sars-cov2 pulmonary infection, the advent of modern deep learning methods has had phenomenal growth in genomics, electronic health records, and drug development. The challenges in Deep learning applications in medicine include lack of data, privacy, heterogeneity of data, and interpretability. Analysis and discussion on these problems provide a reference to improve the application of deep learning in medical health.
ABSTRACT
Recent studies in machine learning have demonstrated the effectiveness of applying graph neural networks (GNNs) to single-cell RNA sequencing (scRNA-seq) data to predict COVID-19 disease states. In this study, we propose a graph attention capsule network (GACapNet) which extracts and fuses Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) transcriptomic patterns to improve node classification performance on cells and genes. Significantly different from the existing GNN approaches, we innovatively incorporate a capsule layer with dynamic routing into our model architecture to combine and fuse gene features effectively and to allow those more prominent gene features present in the output. We evaluate our GACapNet model on two scRNA-seq datasets, and the experimental results show that our GACapNet model significantly outperforms state-of-the-art baseline models. Therefore, our study demonstrates the capability of advanced machine learning models to generate predictive features and evolutionary patterns of the SARS-CoV-2 pathogen, and the applicability of closing knowledge gaps in the pathogenesis and recovery of COVID-19. © 2022 IEEE.
ABSTRACT
PurposeMost epidemic transmission forecasting methods can only provide deterministic outputs. This study aims to show that probabilistic forecasting, in contrast, is suitable for stochastic demand modeling and emergency medical resource planning under uncertainty.Design/methodology/approachTwo probabilistic forecasting methods, i.e. quantile regression convolutional neural network and kernel density estimation, are combined to provide the conditional quantiles and conditional densities of infected populations. The value of probabilistic forecasting in improving decision performances and controlling decision risks is investigated by an empirical study on the emergency medical resource planning for the COVID-19 pandemic.FindingsThe managerial implications obtained from the empirical results include (1) the optimization models using the conditional quantile or the point forecasting result obtain better results than those using the conditional density;(2) for sufficient resources, decision-makers' risk preferences can be incorporated to make tradeoffs between the possible surpluses and shortages of resources in the emergency medical resource planning at different quantile levels;and (3) for scarce resources, the differences in emergency medical resource planning at different quantile levels greatly decrease or disappear because of the existing of forecasting errors and supply quantity constraints.Originality/valueVery few studies concern probabilistic epidemic transmission forecasting methods, and this is the first attempt to incorporate deep learning methods into a two-phase framework for data-driven emergency medical resource planning under uncertainty. Moreover, the findings from the empirical results are valuable to select a suitable forecasting method and design an efficient emergency medical resource plan.
ABSTRACT
At present, the Covid-19 epidemic is still spreading globally. Although the domestic epidemic has been well controlled, the prevention and control of the epidemic must not be taken lightly. Being able to count the number of people in public places in real time has played a vital role in the prevention and control of the epidemic. Deep learning networks usually cannot be directly deployed on embedded devices with low computing power due to the huge amount of parameters of convolutional neural networks. This article is based on the YOLOv5 object detection algorithm and Jetson Nano embedded platform with TensorRT and C++ accelerating, it can realize the function of counting the number of people in the classroom, on the elevator entrance, and other scenes. © 2022 SPIE.
ABSTRACT
To restrict the virus's transmission in the pandemic and lessen the strain on the healthcare industry, computer-assisted diagnostics for the accurate and speedy diagnosis of coronavirus illness (COVID-19) has become a prerequisite. Compared to other types of imaging and detection, chest X-ray imaging (CXR) provides several advantages. Healthcare practitioners may profit from any technology instrument providing quick and accurate COVID-19 infection detection. COVID-LiteNet is a technique suggested in this paper that combines white balance with Contrast Limited Adaptive Histogram Equalization (CLAHE) and a convolutional neural network (CNN). White balance is employed as an image pre-processing step in this approach, followed by CLAHE, to improve the visibility of CXR images, and CNN is trained using sparse categorical cross-entropy for image classification tasks and gives the smaller parameters file size, i.e., 2.24 MB. The suggested COVID-LiteNet technique produced better results than vanilla CNN with no pre-processing. The proposed approach outperformed several state-of-the-art methods with a binary classification accuracy of 98.44 percent and a multi-class classification accuracy of 97.50 percent. COVID-LiteNet, the suggested technique, outperformed the competition on various performance parameters. COVID-LiteNet may help radiologists discover COVID-19 patients from CXR pictures by providing thorough model interpretations, cutting diagnostic time significantly. © 2023 IEEE.
ABSTRACT
Enhanced diagnosis with considerably good sensitivity and specificity is highly indispensable for COVID-19 diagnosis using radiological data to combat hazardous viral infection. Accuracy of diagnosis is a very important part that helps in further triaging and disease management. Artificial intelligent techniques using Convolutional Neural Networks and their modified alternatives have been recognized to be the salvation in chaotic situations and emergencies. Despite their immense ability to give quality results, they suffer from overfitting problems which have to be reduced by regularizing the networks. Dropout is one such regularization that modifies the network to achieve improved performance by discarding the unwanted nodes in the network layers. A simple neural network architecture inspired by former renowned architectures with dropout-driven hidden layers, CVDNN is built and experimented with for various dropout probabilities (0.1, 0.25, 0.5 and 0.75). The model was also tested with different numbers of dense layers: CVDNN1 with a single dense layer and CVDNN2 with two dense layers of a fixed dropout probability of 0.5 in it. The models are trained and tested with pulmonary computed tomography images to distinguish COVID-19 abnormality against normal cases. The CVDNN2 model presents better functioning with improved performance measures than CVDNN1 with an accuracy of 92.86 % accuracy, 90.21% sensitivity and a specificity of 95.52% for the dataset used. Dropout probabilities of 0.25 and 0.5 present reliable and better results compared to the other values experimented with. Hence a dropout-driven hidden layer can enhance the neural network's performance by choosing either 0.25 or 0.5 preferably for different applications. © 2023 IEEE.
ABSTRACT
Supervised machine learning (SML) provides us with tools to efficiently scrutinize large corpora of communication texts. Yet, setting up such a tool involves plenty of decisions starting with the data needed for training, the selection of an algorithm, and the details of model training. We aim at establishing a firm link between communication research tasks and the corresponding state-of-the-art in natural language processing research by systematically comparing the performance of different automatic text analysis approaches. We do this for a challenging task – stance detection of opinions on policy measures to tackle the COVID-19 pandemic in Germany voiced on Twitter. Our results add evidence that pre-trained language models such as BERT outperform feature-based and other neural network approaches. Yet, the gains one can achieve differ greatly depending on the specific merits of pre-training (i.e., use of different language models). Adding to the robustness of our conclusions, we run a generalizability check with a different use case in terms of language and topic. Additionally, we illustrate how the amount and quality of training data affect model performance pointing to potential compensation effects. Based on our results, we derive important practical recommendations for setting up such SML tools to study communication texts.
ABSTRACT
The COVID-19 pandemic began in December2019 and caused a global crisis. The WHO declared it a pandemic on March 11, 2020. Since October 10, 2020, COVID-19 has affected 200+ countries, causing over 37 million confirmed cases and 1 million deaths. RT-PCR is the usual method for detecting it, but it has drawbacks. Individuals who exhibit symptoms of COVID-19 but receive negative results from RT-PCR tests may be diagnosed with the disease using chest X-rays and CT scans, as these imaging techniques are capable of detecting lung abnormalities that are commonly associated with COVID-19, including consolidation and ground-glass opacities. The detection of COVID-19 systems faces numerous challenges, including false negatives, limited testing capacity, a scarcity of imaging equipment, and a shortage of data. With the increasing number of cases, there is a pressing need for a quicker, more cost-effective screening method. Chest X-ray scans can serve as a supplementary or confirming approach as they are fast and readily available. An Automated Hybrid Convolutional Neural network-Hopfield Neural Network (CHNN) is proposed in this study by extracting the features using VGG-19 for the classification and detection of lung diseases. In this work, both two-fold and multi-class classifications have been done with 99% and 97% accuracy respectively. © 2023 IEEE.
ABSTRACT
Background and Objectives: Due to the high prevalence of COVID-19 disease and its high mortality rate, it is necessary to identify the symptoms, demographic information and underlying diseases that effectively predict COVID-19 death. Therefore, in this study, we aimed to predict the mortality behavior due to COVID-19 in Khorasan Razavi province. Method(s): This study collected data from 51, 460 patients admitted to the hospitals of Khorasan Razavi province from 25 March 2017 to 12 September 2014. Logistic regression and Neural network methods, including machine learning methods, were used to identify survivors and non-survivors caused by COVID-19. Result(s): Decreased consciousness, cough, PO2 level less than 93%, age, cancer, chronic kidney diseases, fever, headache, smoking status, and chronic blood diseases are the most important predictors of death. The accuracy of the artificial neural network model was 89.90% in the test phase. Also, the sensitivity, specificity and area under the rock curve in this model are equal to 76.14%, 91.99% and 77.65%, respectively. Conclusion(s): Our findings highlight the importance of some demographic information, underlying diseases, and clinical signs in predicting survivors and non-survivors of COVID-19. Also, the neural network model provided high accuracy in prediction. However, medical research in this field will lead to complementary results by using other methods of machine learning and their high power.Copyright © 2022 The Authors.
ABSTRACT
As COVID-19 is highly infectious, the prevention of this disease is mandatory. The instant diagnosis of this disease is obligatory to stop the infection. The most commonly used procedure for COVID-19 detection is the RT-PCR test. But this process is very time-consuming and as a result, it allows the covid infected persons to spread the infection before they come to know the test result. So, in this paper, we used the method of detecting COVID-19 from CT scan images as a replacement for the conventional RT-PCR test. But this alternative method has its demerit too. To diagnose COVID-19 from these CT scan images, the analysis of a radiologist expert is required. So, we have used a deep-learning based method for automatic detection of covid infection from the CT scan images. We have used six pre-trained models: ResNet50, Xception, DenseNet121, DenseNet201, MobileNet, MobileNetV2 and their accuracy are 97.38%, 92.35%, 95.56%, 93.55%, 93.95%, and 92.94% respectively. © 2022 IEEE.
ABSTRACT
With the development of medical technology, the diagnosis of lung diseases relies more on the determination of medical images. With increasingly huge data, a powerful data processing model is urgently needed to provide favorable support for this field. The goal of this study is to develop a computer-assisted method to identify COVID-19 from X-ray pictures of the lungs at the very beginning of the disease. The architecture is implemented as a software system on a computer that can assist in the affordable and accurate early identification of cardiac illness. The performance of CNN architecture is best among all other classification algorithms to detect COVID-9 from Lung X-ray images. The datasets consist of COVID-19 established cases for 4 weeks which included the X-ray images of the chest. Then the distribution of the data was examined according to the statistical distribution. For this prediction, time series models are used for forecasting the pandemic situation. The performances of the methods were compared according to the MSE metric and it was seen that the Convolutional Neural Networks (CNN) achieved the optimal trend pattern.
ABSTRACT
Deep learning has been widely used to analyze radiographic pictures such as chest scans. These radiographic pictures include a wealth of information, including patterns and cluster-like formations, which aid in the discovery and conformance of COVID-19-like pandemics. The COVID-19 pandemic is wreaking havoc on global well-being and public health. Until present, more than 27 million confirmed cases have been recorded globally. Due to the increasing number of confirmed cases and issues with COVID-19 variants, fast and accurate categorization of healthy and infected individuals is critical for COVID-19 management and treatment. In medical image analysis and classification, artificial intelligence (AI) approaches in general, and region-based convolutional neural networks (CNNs) in particular, have yielded promising results. In this study, a deep Mask R-CNN architecture based on chest image classification is suggested for the diagnosis of COVID-19. An effective and reliable Mask R-CNN classification was difficult due to a lack of sufficient size and high-quality chest image datasets. These complications are addressed with Mask Region-based convolutional neural networks (R-CNNs) as a framework for detecting COVID-19 patients from chest pictures using an open-source dataset. First, the model was evaluated using 100 photos from the original processed dataset, and it was found to be accurate. The model was then validated against an independent dataset of COVID-19 X-ray pictures. The suggested model outperformed all other models in general and specifically when tested using an independent testing set. © 2023 IEEE.
ABSTRACT
The heterotypic perspective of cancer depicts solid tumors as ecosystems composed of aberrant epithelium tumor cells and a multitude of cell types together referred to as stromal cells. Macrophages, which are innate immune cells, are overrepresented in certain environments. Tumor-associated macrophages (TAMs) are macrophages found in the tumor microenvironment;they are derived from the blood's monocytes and are essential for tumor progression. TAMs acquiring tumorigenic qualities is dependent on a complicated interaction between TAMs and tumor cells. Using co-culture studies, we showed that tumor-derived secretory signals promote Tams' tumor-promoting characteristics, shaping up Tams' features in ways that are advantageous to the tumor. When model human monocytes (THP-1) were co-cultured with A549 cells, the A549 cells exhibited increased proliferation, migration, and invasiveness due to the secretion of tumor-promoting cytokines from the THP-1 cells. We showed that EDA-containing Fibronectin secreted by A549 cells reliably mediates the pro-inflammatory response of THP-1 monocytes in a paracrine manner. Ablation of such responses by the treatment of THP-1 cells with TLR-4 blocking antibody implicated Fibronectin-TLR4 axis in tumor-associated inflammation and suggests a paradigm wherein lung carcinoma cell derived EDA-containing Fibronectin drives a pro-inflammatory and pro-metastatic tumor microenvironment. Interestingly, autocrine proliferation, migration, and invasion were all boosted by EDA-containing Fibronectin secreted by A549 cells. Lastly, we demonstrated that the EDA in Fibronectin activates the epithelial-mesenchymal transition pathway in A549 cells, hence granting these cells the ability to metastasize. © 2023 IEEE.
ABSTRACT
Surveillance camera has become an essential, ubiquitous technology in people's daily lives, whether applicable for home surveillance or extended to public workplace detection. The importance of the camera is irreplaceable in terms of the agent for an enclosed system to function correctly. The goal of ubiquitous computing is to keep different devices or technology communicating seamlessly, allowing them to expand to other areas instead of limiting it to one device. However, many research papers have been released on how the camera can aid in the current situation where COVID-19 is still raging worldwide, especially in crowded places. This paper aims to suggest a method by which surveillance cameras on the university campus can automatically detect student face mask status and notify them. Alongside that, this concept of applying a video management system within the university campus will assist in the automation of invigilating the student's daily mask status from the number of embedded surveillance cameras around the campus. © 2023 IEEE.
ABSTRACT
The COVID-19 pandemic took the world by surprise, and everything came to a halt. The education sector had to adjust accordingly by shifting to online learning. If the online delivery experience was overall successful, assessment integrity becomes questionable as examinees still manage to circumvent the anti-plagiarism mechanism put in place. In this paper, we propose an artificial intelligence solution using face and head pose detection to estimate the neutral position of the examinee which will form the basis to detect any suspicious behavior. The resulting implementation achieved a 97% accuracy when detecting the examinee in the frame and a 98% accuracy when there are multiple faces detected. © 2023 IEEE.