Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Textiles ; 1(2):152-169, 2021.
Article in English | ProQuest Central | ID: covidwho-1834893

ABSTRACT

Recent developments in electrospinning technology have enabled the commercial-scale production of nonwoven fabrics from synthetic and natural polymers. Since the early 2000s, polysaccharides and their derivatives have been recognized as promising raw materials for electrospinning, and their electrospun textiles have attracted increasing attention for their diverse potential applications. In particular, their biomedical applications have been spotlighted thanks to their “green” aspects, e.g., abundance in nature, biocompatibility, and biodegradability. This review focuses on three main research topics in the biomedical applications of electrospun polysaccharidic textiles: (i) delivery of therapeutic molecules, (ii) tissue engineering, and (iii) wound healing, and discusses recent progress and prospects.

2.
Environ Pollut ; 285: 117485, 2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-1252841

ABSTRACT

The consumption of disposable face masks increases greatly because of the outbreak of the COVID-19 pandemic. Inappropriate disposal of wasted face masks has already caused the pollution of the environment. As made from plastic nonwoven fabrics, disposable face masks could be a potential source of microplastics for the environment. In this study, we evaluated the ability of new and used disposable face masks of different types to release microplastics into the water. The microplastic release capacity of the used masks increased significantly from 183.00 ± 78.42 particles/piece for the new masks to 1246.62 ± 403.50 particles/piece. Most microplastics released from the face masks were medium size transparent polypropylene fibers originated from the nonwoven fabrics. The abrasion and aging during the using of face masks enhanced the releasing of microplastics since the increasing of medium size and blue microplastics. The face masks could also accumulate airborne microplastics during use. Our results indicated that used disposable masks without effective disposal could be a critical source of microplastics in the environment. The efficient allocation of mask resources and the proper disposal of wasted masks are not only beneficial to pandemic control but also to environmental safety.


Subject(s)
COVID-19 , Microplastics , Humans , Masks , Pandemics , Plastics , SARS-CoV-2
3.
Molecules ; 25(23)2020 Nov 26.
Article in English | MEDLINE | ID: covidwho-954930

ABSTRACT

Filtration systems used in technical and medical applications require components for fine particle deep filtration to be highly efficient and at the same time air permeable. In high efficiency filters, nonwoven meshes, which show increased performance based on small fiber diameters (e.g., using nanofibers), can be used as fine particle filter layers. Nanofiber nonwoven meshes made by electrospinning of spider silk proteins have been recently shown to exhibit required filter properties. Needle-based electrospinning, however, is limited regarding its productivity and scalability. Centrifugal electrospinning, in contrast, has been shown to allow manufacturing of ultrathin polymer nonwoven meshes in an efficient and scalable manner. Here, continuous roll-to-roll production of nonwoven meshes made of recombinant spider silk proteins is established using centrifugal electrospinning. The produced spider silk nanofiber meshes show high filter efficiency in the case of fine particulate matter below 2.5 µm (PM2.5) and a low pressure drop, resulting in excellent filter quality.


Subject(s)
Arthropod Proteins , Filtration , Membranes, Artificial , Nanofibers , Silk , Air Filters , Arthropod Proteins/chemistry , Filtration/methods , Nanofibers/ultrastructure , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL