Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Front Microbiol ; 13: 975632, 2022.
Article in English | MEDLINE | ID: covidwho-2109796

ABSTRACT

Coronaviruses have long posed a major threat not only to human health but also to agriculture. Outbreaks of an animal coronavirus such as porcine epidemic diarrhea virus (PEDV) can cause up-to-100% mortality in suckling piglets, resulting in devastating effects on the livestock industry. Understanding how the virus evades its host's defense can help us better manage the infection. Zinc-finger antiviral protein (ZAP) is an important class of host antiviral factors against a variety of viruses, including the human coronavirus. In this study, we have shown that a representative porcine coronavirus, PEDV, can be suppressed by endogenous or porcine-cell-derived ZAP in VeroE6 cells. An uneven distribution pattern of CpG dinucleotides in the viral genome is one of the factors contributing to suppression, as an increase in CpG content in the nucleocapsid (N) gene renders the virus more susceptible to ZAP. Our study revealed that the virus uses its own nucleocapsid protein (pCoV-N) to interact with ZAP and counteract the activity of ZAP. The insights into coronavirus-host interactions shown in this work could be used in the design and development of modern vaccines and antiviral agents for the next pandemic.

2.
Viruses ; 14(10)2022 10 16.
Article in English | MEDLINE | ID: covidwho-2071840

ABSTRACT

Host-virus protein interactions are critical for intracellular viral propagation. Understanding the interactions between cellular and viral proteins may help us develop new antiviral strategies. Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe damage to the global swine industry. Here, we employed co-immunoprecipitation and liquid chromatography-mass spectrometry to characterize 426 unique PEDV nucleocapsid (N) protein-binding proteins in infected Vero cells. A protein-protein interaction network (PPI) was created, and gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses revealed that the PEDV N-bound proteins belong to different cellular pathways, such as nucleic acid binding, ribonucleoprotein complex binding, RNA methyltransferase, and polymerase activities. Interactions of the PEDV N protein with 11 putative proteins: tripartite motif containing 21, DEAD-box RNA helicase 24, G3BP stress granule assembly factor 1, heat shock protein family A member 8, heat shock protein 90 alpha family class B member 1, YTH domain containing 1, nucleolin, Y-box binding protein 1, vimentin, heterogeneous nuclear ribonucleoprotein A2/B1, and karyopherin subunit alpha 1, were further confirmed by in vitro co-immunoprecipitation assay. In summary, studying an interaction network can facilitate the identification of antiviral therapeutic strategies and novel targets for PEDV infection.


Subject(s)
Coronavirus Infections , Nucleic Acids , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Swine , Animals , Porcine epidemic diarrhea virus/genetics , Vimentin/metabolism , Vero Cells , Nucleocapsid/metabolism , Nucleocapsid Proteins/genetics , Viral Proteins/metabolism , Coronavirus Infections/metabolism , Antiviral Agents/metabolism , RNA/metabolism , Heat-Shock Proteins/metabolism , Methyltransferases/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , DEAD-box RNA Helicases/metabolism , Ribonucleoproteins/metabolism , Karyopherins/metabolism , Nucleic Acids/metabolism
3.
Res Vet Sci ; 152: 236-244, 2022 Dec 20.
Article in English | MEDLINE | ID: covidwho-2069657

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) envelope protein (E) is recognized as a viroporin that plays important functions in virus budding, assembly and virulence. Our previous study found that PEDV E protein induces endoplasmic reticulum stress (ERS), as well as suppresses the type I interferon (IFN) response, but their link and underlying mechanism remain obscure. To better understand this relationship, we investigated the roles of PEDV E protein-induced ERS in regulating cellular type I IFN production. Our results showed that PEDV E protein localized in the ER and triggered ERS through activation of PERK/eIF2α branch, as revealed by the up-regulated phosphorylation of PERK and eIF2α. PEDV E protein also significantly inhibited both poly(I:C)-induced and RIG-I signaling-mediated type I interferon production. The PERK/eIF2α branch of ERS activated by PEDV E protein led to the translation attenuation of RIG-I signaling-associated antiviral proteins, resulting in the suppression of type I IFN production. However, PEDV E protein had no effect on the mRNA transcription of RIG-I-associated molecules. Moreover, suppression of ERS with 4-PBA, a widely used ERS inhibitor, restored the expression of RIG-I-signaling-associated antiviral proteins and mRNA transcription of IFN-ß and ISGs genes to their normal levels, suggesting that PEDV E protein blocks the production of type I IFN through inhibiting expression of antiviral proteins caused by ERS-mediated translation attenuation. This study elucidates the mechanism by which PEDV E protein specifically modulates the ERS to inhibit type I IFN production, which will augment our understanding of PEDV E protein-mediated virus evasion of host innate immunity.


Subject(s)
Coronavirus Infections , Interferon Type I , Porcine epidemic diarrhea virus , Swine Diseases , Swine , Animals , Antiviral Agents , Endoplasmic Reticulum Stress , Cell Line , Eukaryotic Initiation Factor-2 , RNA, Messenger , Coronavirus Infections/veterinary
4.
Chinese Veterinary Science / Zhongguo Shouyi Kexue ; 50(1):10-19, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-2056573

ABSTRACT

The aim of this study is to establish an indirect ELISA technique for detecting the SIgA antibody against porcine epidemic diarrhea virus (PEDV) to evaluate its mucosal immunity. Firstly, the S1D gene (534-789 aa) of PEDV was cloned into the pET-28a(+) vector, and induced in Escherichia coli BL21 (DE3) by IPTG, the product of which was in the form of inclusion bodies. According to Western-blot, the target protein S1D with antigenic activity was 32 ku in molecular weight and could be well detected. Then, the S1D protein was denatured by 8 mol/L urea, purified and gradient as the coating antigen to establish an indirect ELISA for detecting the PEDV specific SIgA antibody in nasal or oral mucus by optimizing conditions. And the optimal antigen coating concentration of ELISA was 2 micro g mL, the working concentrations of nasal mucus was 1:1 and the optimal blocking solution was 50 g/L skimmed milk, while the working concentrations and optimal blocking solution were 1:2 and 30 g/L BSA in oral mucus, the working concentrations of the enzyme-labeled antibody was 1:2 000 in nasal and oral mucus. Finally, 84 samples of oral and nasal mucus from immunized pigs were detected by S1D of ELISA, and the coincidence rate could reach 95.2% compared with purified PEDV of ELISA. In conclusion, the indirect ELISA established in this study provided a quick, simple, sensitive, and specific method to detect PEDV specific SigA for evaluating the level of PEDV mucosal immunity.

5.
Chinese Veterinary Science / Zhongguo Shouyi Kexue ; 50(12):1500-1508, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-2040500

ABSTRACT

Based on the M gene sequence of TGEV and PEDV and VP2 gene sequence of PoRV, the optimal reaction system and amplification procedure were established by optimizing primer, probe concentration and annealing temperature, and the Quantitative PCR method of TaqMan probes for three viruses is successfully established. On this basis, after further optimization of conditions, a triple real-time fluorescent quantitative PCR method for detecting TGEV, PEDV, and PoRV was established. The detection sensitivity of this method for TGEV, PEDV, and PoRV were 2.49 copies/ L, 4.36 copies/ L, and 4.96 copies/ L respectively. The maximum value of CV in repeated trials detected by TGEV, PEDV and PoRV were 2.5%, 3.8%, 4.3%, and the maximum value of CV in repeated trials between groups were 3.7%, 3.4%, 3.2%, which are no more than 5%.indicating that the established method has good reproducibility. Using this method to detect PRV, PCV1, and PRRSV virus samples, there is no cross-reaction, indicating that the method is specific. Using the established method to detect 40 clinical diseases, the samples were tested, and the positive rates of TGEV, PEDV, and PoRV were 5%, 30%, and 12.5%respectively. The mixed infection rate of TGEV and PEDV was 2.5%, the mixed infection rate of PEDV and PoRV was 5%. The results of the multiple fluorescence quantitative PCR method are consistent with those of the detection of a single fluorescent RT-PCR method, indicating that the established method has good clinical application value.

6.
Chinese Veterinary Science / Zhongguo Shouyi Kexue ; 50(11):1373-1378, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-2040499

ABSTRACT

In order to build a specific, sensitive and rapid detection method for PAstV3 detection, the PAstVB gene sequences in Genbank were used and the conserved region in ORFlb was selected to design specific primers and TaqMan probe. Clinical stool samples were collected and preliminary detected by this newly established real-time RT-PCR method after reaction systems and conditions optimization. This detection method established in this study has a good linear relationship with the standard curve, with R2 value up to 0.9971. The sensitivity is 100 times higher than conventional PCR method, The variation co-efficient of in-batch and inter-batch repeatability test is less than 2.0%, indicating good repeatability. The detection results of Clinical samples showed that the positive rate of this method is higher than conventional PCR method. The establishment of this method provides a rapid detection means for PAstV3 laboratory diagnosis and epidemiological investigation.

7.
Chinese Veterinary Science / Zhongguo Shouyi Kexue ; 50(11):1421-1427, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-2040498

ABSTRACT

Recently, the variation and isolation of porcine epidemic diarrhea Virus (PEDV) has been a focus of industry research. Whether porcine aminopeptidase (pAPN) is a functional receptor of PEDV infection is still controversial. Therefore, this article aims to review the latest progress on pAPN as a receptor of PEDV and its role during infection, to clarify whether pAPN is a functional receptor and to provide a reference for isolation and subsequent study of PEDV.

8.
Chinese Veterinary Science / Zhongguo Shouyi Kexue ; 50(11):1341-1347, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-2040497

ABSTRACT

The recombinant expression plasmid pIRES-S1 was constructed according to the gene sequence of PEDV S1 in NCBI (GenBank:JQ517274). The plasmid pIRES-S1 was transfected into ST cells by electrotransfer. After G418 pressurization screening, western-blot detection and suspension domestication, a stable transduction cell pool expressing S1 protein was obtained. The results of Western-blot showed that S1 protein have good reactivity. An indirect ELISA was established by using S1 protein as coating antigen, and the ELISA was used to detect PEDV clinical serum and PEDV negative serum of imported breeder pigs. Take the serum neutralization test as the standard, the results showed that the sensitivity of the ELISA was 96.3% and the specificity was 97.7%.It was significantly consistent with the serum neutralization test (kappa value=0.882, P < 0.05). The ELISA was used to detect the tracking serum of PEDV back-feeding pigs. The results showed that it could accurately evaluate the growth and decline of PEDV Ig G antibody level in infected pigs. Our results suggested that the ELISA based on S1 protein established in this study has high sensitivity and specificity. It could be used to detect PEDV antibody in clinical serum samples and provide an effective basis for immune evaluation of PEDV in pigs.

9.
Acta Microbiologica Sinica ; 8:3152-3165, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-2040441

ABSTRACT

Objective: To identify the key host protein that can regulate the replication of porcine epidemic diarrhea virus (PEDV).

10.
Journal of South China Agricultural University ; 41(5):27-35, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-2040361

ABSTRACT

Objective: To prepare monoclonal antibodies against porcine epidemic diarrhea virus (PEDV) N protein, and develop an indirect immuno-fluorescence assay method used for detecting PEDV. Method: The expressed recombinantly PEDV N protein was used as an immunogen and 8-week-old female BALB/c mice were immunized. Then their spleen cells with high antibody titer were isolated and fused with SP2/0 cells. The hybridoma cell lines secreting monoclonal antibodies against PEDV N protein were screened. In Vero cells infected with PEDV, monoclonal antibody of anti-PEDV N protein was used as the primary antibody and FITC-goat-anti-mouse IgG was used as the secondary antibody to develop indirect immuno-fluorescence assay method used for detecting PEDV. Result: The prepared hybridoma cell lines could stably secrete anti-PEDV N protein antibodies, ELISA antibody titer in cell supernatant was above 1:3 200, and in mouse ascites above 1:1 000 000. While monoclonal antibodies were applied in established indirect immuno-fluorescence assay, the optimal conditions were that cells were fixed with 80% () acetone at -20 degrees C for 30 min;The primary antibody was diluted 1 000 times by PBS buffer solution and incubated at 4 degrees C overnight;The secondary antibody was diluted 100 times by PBS buffer solution and incubated at 37 degrees C for 1 h. Transmissible gastroenteritis virus (TGEV), classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine reproductive virus (PRV), porcine enteric a corone virus (PEAV), porcine rotavirus (PoRV) and PEDV were detected by established indirect immuno-fluorescence assay method, only PEDV showed positive, all the else viruses showed negative.

11.
Animals (Basel) ; 12(17)2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-2023064

ABSTRACT

Since 2010, a variant of porcine epidemic diarrhea virus (PEDV) has re-emerged in several provinces of China, resulting in severe economic losses for the pork industry. Here, we isolated and identified a variant PEDV strain, SC-YB73, in Guangdong Province, China. The pathological observations of jejunum showed atrophy of villi and edema in the lamina propria. The sequence analysis of the viral genome identified a six-nucleotide insertion in the E gene, which has not previously been detected in PEDV strains. Furthermore, 50 nucleotide sites were unique in SC-YB73 compared with 27 other PEDV strains. The phylogenetic analysis based on the complete genome showed that SC-YB73 was clustered in variant subgroup GII-a, which is widely prevalent in the Chinese pig population. The recombination analysis suggested that SC-YB73 originated from the recombination of GDS47, US PEDV prototype-like strains TW/Yunlin550/2018, and COL/Cundinamarca/2014. In the present study, we isolated and genetically characterized a variant PEDV strain, thus providing essential information for the control of PED outbreaks in China.

12.
Microb Pathog ; 170: 105703, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2015853

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) frequently causes diarrhea outbreaks. However, whether newly discovered enteric viruses such as porcine kobuvirus (PKV) and porcine astroviruses (PAstVs) are also correlated with diarrhea is still unclear. Diarrhea outbreaks were reported in a PEDV-vaccinated pig farm in Xinjiang Uygur Autonomous Region of China from 2019 to 2020. PEDV was a common pathogen detected in fecal samples by routine RT-PCR assays. The PEDV positive fecal sample was used for pathogenic analysis due to the failure isolation of PEDV. The challenged neonatal piglets appeared watery diarrhea within one day post infection (dpi) and all died within 6 dpi. Histopathological and immunohistochemical examinations supported that PEDV is a major pathogen causing intestinal lesions. To further explore enteric viruses associated with neonatal piglet diarrhea, metagenomics sequencing was performed for the diarrheic piglets. Remarkably, PKV was the most abundant virus (58.33%) followed by PEDV (34.45%) and PAstVs (7.22%), which were also confirmed by real-time RT-PCR assays. Significant in vivo replications of PEDV and PKV could only be observed in challenged piglets whilst PAstVs maintained similar virus loads in both challenged and mock infected piglets. Overall, this study provides first pathogenic and metagenomic evidence that significant proliferations of PEDV and PKV are closely associated with severe diarrhea in neonatal piglets, while PAstVs likely play limited roles in neonatal piglet diarrhea.


Subject(s)
Coronavirus Infections , Kobuvirus , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Diarrhea/epidemiology , Kobuvirus/genetics , Mamastrovirus , Metagenomics , Porcine epidemic diarrhea virus/genetics , Swine
13.
Viruses ; 14(8)2022 08 17.
Article in English | MEDLINE | ID: covidwho-2010307

ABSTRACT

A safe and efficacious live-attenuated vaccine for porcine epidemic diarrhea virus (PEDV) is not commercially available in the United States yet. Two major PEDV strains are currently circulating in US swine: highly virulent non-S-INDEL strain and milder virulent S-INDEL strain. In this study, the safety and protective efficacy of a plaque-purified S-INDEL PEDV isolate formulated as a vaccine candidate was evaluated. Ten pregnant gilts were divided into three groups and orally inoculated at 79 days of gestation and then boosted at 100 days gestation (T01: n = 4, vaccination/challenge; T02: n = 4, non-vaccination/challenge; T03: n = 2, non-vaccination/non-challenge). None of the gilts had adverse clinical signs after vaccination. Only one T01 gilt (#5026) had viral replication and detectible viral RNA in feces. The same gilt had consistent levels of PEDV-specific IgG and IgA antibodies in serum and colostrum/milk. Farrowed piglets at 3 to 5 days of age from T01 and T02 gilts were orally challenged with 103 TCID50/pig of the virulent non-S-INDEL PEDV while T03 piglets were orally inoculated with virus-negative medium. T01 litters had overall lower mortality than T02 (T01 36.4% vs. T02 74.4%). Specifically, there was 0% litter mortality from T01 gilt 5026. Overall, it appears that vaccination of pregnant gilts with S-INDEL PEDV can passively protect piglets if there is virus replication and immune response induction in the pregnant gilts.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Viral Vaccines , Animals , Animals, Newborn , Antibodies, Viral , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Female , Porcine epidemic diarrhea virus/genetics , Pregnancy , Sus scrofa , Swine , Swine Diseases/epidemiology , United States , Vaccines, Attenuated
14.
Angewandte Chemie ; 134(31):1-1, 2022.
Article in English | Academic Search Complete | ID: covidwho-1999826

ABSTRACT

Animal Testing, Aptamers, Coronavirus, Electrochemical Biosensors, Porcine Epidemic Diarrhea Viruses Keywords: Animal Testing;Aptamers;Coronavirus;Electrochemical Biosensors;Porcine Epidemic Diarrhea Viruses EN Animal Testing Aptamers Coronavirus Electrochemical Biosensors Porcine Epidemic Diarrhea Viruses 1 1 1 07/27/22 20220801 NES 220801 B Schnelle und reagenzienfreie Erregertests b werden dringend benötigt. Innenrücktitelbild: A DNA Barcode-Based Aptasensor Enables Rapid Testing of Porcine Epidemic Diarrhea Viruses in Swine Saliva Using Electrochemical Readout (Angew. [Extracted from the article] Copyright of Angewandte Chemie is the property of John Wiley & Sons, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

15.
Chinese Veterinary Science / Zhongguo Shouyi Kexue ; 50(7):825-832, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-1994655

ABSTRACT

In order to establish a method for rapid differential identification of Senecavirus A (SVA) and en-cephalomyocarditis virus (EMCV), two pairs of corresponding specific primers were designed based on the highly conserved 3D genes of SVA and EMCV. And two different fluorescent labeled TaqMan probes were used to establish a dual TaqMan real-time PCR method for simultaneous detection of these two viruses, and we also optimize the reaction conditions. The results showed that the minimum detection of the method was 760 copies/ micro L and 98 copies/ micro L for SVA and EMCV. respectively, and it can specifically detect SVA and EMCV, and there was no cross reaction with CSFV, PRRSV and PEDV. The established standard curves showed good linear relationship. Repeated experimental group and inter-group coefficient of variation were less than 5%. The results indicated that the dual-quantitative PCR established in this study has the advantages of convenience, rapidity, good specificity. high sensitivity and good repeatability .and can be used for simultaneous detection of SVA and EMCV.

16.
Chinese Veterinary Science / Zhongguo Shouyi Kexue ; 50(5):537-544, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-1994651

ABSTRACT

Long noncoding RNA (lncRNA) is a type of non-coding RNA molecule longer than 200 nt, which plays vital roles in biological events. Our previous results demonstrated that the host's lncRNA expression profile was significantly changed after porcine epidemic diarrhea virus (PEDV) infection. In this study, one of the lncRNAs, lncRNA9606, was selected to investigate its impact on PEDV replication. First, the kinetics of lncRNA9606 expression in IPEC-J2 cells were examined at different time points after PEDV infection. The results confirmed that PEDV infection significantly upregulated the expression of lncRNA9606. The lncRNA9606 expression levels in different cells or tissues were evaluated and the results showed that the amount of lncRNA9606 in Peyer's patches and peripheral blood mononuclear cells were significantly higher than that in small intestinal epithelial cell lines. It was mainly localized in the nucleus. Further investigations indicated that over expression of lncRNA in LLC-PK1 cells significantly inhibited PEDV replication. In conclusion, lncRNA9606 can suppress the PEDV replication in LLC-PK1 cells.

17.
Acta Veterinaria et Zootechnica Sinica ; 53(5):1536-1543, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-1994512

ABSTRACT

This study aims to investigate the protective effect of infected piglets which were immunized with different dose of inactivated porcine epidemic diarrhea virus (PEDV) vaccines. The number of infective virus particles and total virus particles of PEDV with different concentrations were determined, and the mice were immunized with different concentration vaccine prepared as antigen, respectively. The humoral and cellular immune production were determined by ELISA antibody detection method, neutralization test and ELISPOT method. Vaccine with appropriate antigen content was selected to immunize piglets, then the antibody was determined. The relationship between concentrated vaccine and protective effect was studied by challenge experiment. The results showed that, when the antigen dose was equal or greater than 8x106 pfu.mL-1, the inactive vaccine could effectively stimulate mice to produce humoral and cellular immunity. The piglets immunized with 2 mL inactivated PEDV vaccine containing 8x106 pfu.mL-1 antigen could resist diarrhea and continuous viral shedding caused by PEDV challenge. Compared with the total number of virus particles, the number of infectious virus particles was significantly correlated with antibody production (r=0.998 1), and neutralization titer was significantly correlated with piglet protection (r=0.974 7). PEDV inactivated vaccine can provide good immune protection, in which the number of infectious virus particles is the key factor to improve the antibody level. Antibody titer, as an index of humoral immunity, is an important reference for judging immune protection.

18.
Front Immunol ; 13: 984448, 2022.
Article in English | MEDLINE | ID: covidwho-1987499

ABSTRACT

Interferons (IFNs) including type I/III IFNs are the major components of the host innate immune response against porcine epidemic diarrhea virus (PEDV) infection, and several viral proteins have been identified to antagonize type I/III IFNs productions through diverse strategies. However, the modulation of PEDV infection upon the activation of the host's innate immune response has not been fully characterized. In this study, we observed that various IFN-stimulated genes (ISGs) were upregulated significantly in a time- and dose-dependent manner in LLC-PK1 cells infected with the PEDV G2 strain FJzz1. The transcriptions of IRF9 and STAT1 were increased markedly in the late stage of FJzz1 infection and the promotion of the phosphorylation and nuclear translocation of STAT1, implicating the activation of the JAK-STAT signaling pathway during FJzz1 infection. In addition, abundant type I/III IFNs were produced after FJzz1 infection. However, type I/III IFNs and ISGs decreased greatly in FJzz1-infected LLC-PK1 cells following the silencing of the RIG-I-like receptors (RLRs), including RIG-I and MDA5, and the Toll-like receptors (TLRs) adaptors, MyD88 and TRIF. Altogether, FJzz1 infection induces the production of type-I/III IFNs in LLC-PK1 cells, in which RLRs and TLRs signaling pathways are involved, followed by the activation of the JAK-STAT signaling cascade, triggering the production of numerous ISGs to exert antiviral effects of innate immunity.


Subject(s)
Interferon Type I , Porcine epidemic diarrhea virus , Animals , Cell Line , Signal Transduction , Swine , Toll-Like Receptors
19.
Viruses ; 14(8)2022 08 09.
Article in English | MEDLINE | ID: covidwho-1979417

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes acute diarrhea, vomiting, dehydration, and a high mortality rate in neonatal piglets. In recent years, PEDV has been associated with co-infections with other swine enteric viruses, including porcine rotavirus (PoRV), resulting in increased mortality among newborn piglets. In this paper, we developed a bivalent vaccine against PEDV and PoRV by constructing a recombinant PEDV encoding PoRV VP7 (rPEDV-PoRV-VP7). The recombinant virus was constructed by replacing the entire open reading frame 3 (ORF3) in the genome of an attenuated PEDV strain YN150 with the PoRV VP7 gene using reverse genetic systems. Similar plaque morphology and replication kinetics were observed in Vero cells with the recombinant PEDV compared to the wild-type PEDV. It is noteworthy that the VP7 protein could be expressed stably in rPEDV-PoRV-VP7-infected cells. To evaluate the immunogenicity and safety of rPEDV-PoRV-VP7, 10-day-old piglets were vaccinated with the recombinant virus. After inoculation, no piglet displayed clinical symptoms such as vomiting, diarrhea, or anorexia. The PoRV VP7- and PEDV spike-specific IgG in serum and IgA in saliva were detected in piglets after rPEDV-PoRV-VP7 vaccination. Moreover, both PoRV and PEDV neutralizing antibodies were produced simultaneously in the inoculated piglets. Collectively, we engineered a recombinant PEDV expressing PoRV VP7 that could be used as an effective bivalent vaccine against PEDV and PoRV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Chlorocebus aethiops , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Diarrhea/prevention & control , Diarrhea/veterinary , Porcine epidemic diarrhea virus/genetics , Rotavirus , Swine , Vaccines, Combined , Vero Cells , Vomiting
20.
Viruses ; 14(8)2022 08 09.
Article in English | MEDLINE | ID: covidwho-1979415

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) has been endemic in most parts of the world since its emergence in the 1970s. It infects the small intestine and intestinal villous cells, spreads rapidly, and causes infectious intestinal disease characterized by vomiting, diarrhea, and dehydration, leading to high mortality in newborn piglets and causing massive economic losses to the pig industry. The entry of PEDV into cells is mediated by the binding of its spike protein (S protein) to a host cell receptor. Here, we review the structure of PEDV, its strains, and the structure and function of the S protein shared by coronaviruses, and summarize the progress of research on possible host cell receptors since the discovery of PEDV.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Coronavirus/metabolism , Coronavirus Infections/veterinary , Porcine epidemic diarrhea virus/physiology , Spike Glycoprotein, Coronavirus/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL