Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 843
Filter
Add filters

Year range
1.
Translational Neurodegeneration ; 11:1-28, 2022.
Article in English | ProQuest Central | ID: covidwho-2038939

ABSTRACT

Furin is an important mammalian proprotein convertase that catalyzes the proteolytic maturation of a variety of prohormones and proproteins in the secretory pathway. In the brain, the substrates of furin include the proproteins of growth factors, receptors and enzymes. Emerging evidence, such as reduced FURIN mRNA expression in the brains of Alzheimer’s disease patients or schizophrenia patients, has implicated a crucial role of furin in the pathophysiology of neurodegenerative and neuropsychiatric diseases. Currently, compared to cancer and infectious diseases, the aberrant expression of furin and its pharmaceutical potentials in neurological diseases remain poorly understood. In this article, we provide an overview on the physiological roles of furin and its substrates in the brain, summarize the deregulation of furin expression and its effects in neurodegenerative and neuropsychiatric disorders, and discuss the implications and current approaches that target furin for therapeutic interventions. This review may expedite future studies to clarify the molecular mechanisms of furin deregulation and involvement in the pathogenesis of neurodegenerative and neuropsychiatric diseases, and to develop new diagnosis and treatment strategies for these diseases.

2.
Skeletal Muscle ; 12:1-16, 2022.
Article in English | ProQuest Central | ID: covidwho-2038880

ABSTRACT

Background In intensive care units (ICU), mechanical ventilation (MV) is commonly applied to save patients’ lives. However, ventilator-induced diaphragm dysfunction (VIDD) can complicate treatment by hindering weaning in critically ill patients and worsening outcomes. The goal of this study was to identify potential genes involved in the endogenous protective mechanism against VIDD. Methods Twelve adult male rabbits were assigned to either an MV group or a control group under the same anesthetic conditions. Immunostaining and quantitative morphometry were used to assess diaphragm atrophy, while RNA-seq was used to investigate molecular differences between the groups. Additionally, core module and hub genes were analyzed using WGCNA, and co-differentially expressed hub genes were subsequently discovered by overlapping the differentially expressed genes (DEGs) with the hub genes from WGCNA. The identified genes were validated by western blotting (WB) and quantitative real-time polymerase chain reaction (qRT–PCR). Results After a VIDD model was successfully built, 1276 DEGs were found between the MV and control groups. The turquoise and yellow modules were identified as the core modules, and Trim63, Fbxo32, Uchl1, Tmprss13, and Cst3 were identified as the five co-differentially expressed hub genes. After the two atrophy-related genes (Trim63 and Fbxo32) were excluded, the levels of the remaining three genes/proteins (Uchl1/UCHL1, Tmprss13/TMPRSS13, and Cst3/CST3) were found to be significantly elevated in the MV group (P < 0.05), suggesting the existence of a potential antiproteasomal, antiapoptotic, and antiautophagic mechanism against diaphragm dysfunction. Conclusion The current research helps to reveal a potentially important endogenous protective mechanism that could serve as a novel therapeutic target against VIDD.

3.
Annals of Clinical Microbiology and Antimicrobials ; 21:1-8, 2022.
Article in English | ProQuest Central | ID: covidwho-2038767

ABSTRACT

Aim The aim of the present study is to compare the performance of 16S rRNA Nanopore sequencing and conventional culture in detecting infectious pathogens in patients with suspected meningitis in a resource-limited setting without extensive bioinformatics expertise. Methods DNA was isolated from the cerebrospinal fluid (CSF) of 30 patients with suspected bacterial meningitis. The isolated DNA was subjected to 16S sequencing using MinION™. The data were analysed in real time via the EPI2ME cloud platform. The Nanopore sequencing was done in parallel to routine microbiological diagnostics. Results Nanopore sequencing detected bacterial pathogens to species level in 13 of 30 (43%) samples. CSF culture showed 40% (12/30) positivity. In 21 of 30 patients (70%) with suspected bacterial meningitis, both methods yielded concordant results. About nine of 30 samples showed discordant results, of these five were false positive and four were false negative. In five of the culture negative results, nanopore sequencing was able to detect pathogen genome, due to the higher sensitivity of the molecular diagnostics. In two other samples, the CSF culture revealed Cryptococcus neoformans and Streptococcus pneumoniae, which were not detected by Nanopore sequencing. Overall, using both the cultures and 16S Nanopore sequencing, positivity rate increased from 40% (12/30) to 57% (17/30). Conclusion Next-generation sequencing could detect pathogens within six hours and could become an important tool for both pathogen screening and surveillance in low- and middle-income countries (LMICs) that do not have direct access to extensive bioinformatics expertise.

4.
BMC Genomics ; 23:1-11, 2022.
Article in English | ProQuest Central | ID: covidwho-2038658

ABSTRACT

Phage ImmunoPrecipitation Sequencing (PhIP-Seq) is a recently developed technology to assess antibody reactivity, quantifying antibody binding towards hundreds of thousands of candidate epitopes. The output from PhIP-Seq experiments are read count matrices, similar to RNA-Seq data;however some important differences do exist. In this manuscript we investigated whether the publicly available method edgeR (Robinson et al., Bioinformatics 26(1):139–140, 2010) for normalization and analysis of RNA-Seq data is also suitable for PhIP-Seq data. We find that edgeR is remarkably effective, but improvements can be made and introduce a Bayesian framework specifically tailored for data from PhIP-Seq experiments (Bayesian Enrichment Estimation in R, BEER).

5.
Biochemistry ; 87(9):916-931, 2022.
Article in English | ProQuest Central | ID: covidwho-2038256

ABSTRACT

Endoplasmic reticulum (ER) is a multifunctional membrane-enclosed organelle. One of the major ER functions is cotranslational transport and processing of secretory, lysosomal, and transmembrane proteins. Impaired protein processing caused by disturbances in the ER homeostasis results in the ER stress. Restoration of normal ER functioning requires activation of an adaptive mechanism involving cell response to misfolded proteins, the so-called unfolded protein response (UPR). Besides controlling protein folding, UPR plays a key role in other physiological processes, in particular, differentiation of cells of connective, muscle, epithelial, and neural tissues. Cell differentiation is induced by the physiological levels of ER stress, while excessive ER stress suppresses differentiation and can result in cell death. So far, it remains unknown whether UPR activation induces cell differentiation or if UPR is initiated by the upregulated synthesis of secretory proteins during cell differentiation. Cell differentiation is an important stage in the development of multicellular organisms and is tightly controlled. Suppression or excessive activation of this process can lead to the development of various pathologies in an organism. In particular, impairments in the differentiation of connective tissue cells can result in the development of fibrosis, obesity, and osteoporosis. Recently, special attention has been paid to fibrosis as one of the major complications of COVID-19. Therefore, studying the role of UPR in the activation of cell differentiation is of both theoretical and practical interest, as it might result in the identification of molecular targets for selective regulation of cell differentiation stages and as well as the potential to modulate the mechanisms involved in the development of various pathological states.

6.
BioDrugs ; 36(5):549-571, 2022.
Article in English | ProQuest Central | ID: covidwho-2035460

ABSTRACT

The highly specific induction of RNA interference-mediated gene knockdown, based on the direct application of small interfering RNAs (siRNAs), opens novel avenues towards innovative therapies. Two decades after the discovery of the RNA interference mechanism, the first siRNA drugs received approval for clinical use by the US Food and Drug Administration and the European Medicines Agency between 2018 and 2022. These are mainly based on an siRNA conjugation with a targeting moiety for liver hepatocytes, N-acetylgalactosamine, and cover the treatment of acute hepatic porphyria, transthyretinmediated amyloidosis, hypercholesterolemia, and primary hyperoxaluria type 1. Still, the development of siRNA therapeutics faces several challenges and issues, including the definition of optimal siRNAs in terms of target, sequence, and chemical modifications, siRNA delivery to its intended site of action, and the absence of unspecific off-target effects. Further siRNA drugs are in clinical studies, based on different delivery systems and covering a wide range of different pathologies including metabolic diseases, hematology, infectious diseases, oncology, ocular diseases, and others. This article reviews the knowledge on siRNA design and chemical modification, as well as issues related to siRNA delivery that may be addressed using different delivery systems. Details on the mode of action and clinical status of the various siRNA therapeutics are provided, before giving an outlook on issues regarding the future of siRNA drugs and on their potential as one emerging standard modality in pharmacotherapy. Notably, this may also cover otherwise un-druggable diseases, the definition of non-coding RNAs as targets, and novel concepts of personalized and combination treatment regimens.

7.
Chinese Journal of Nosocomiology ; 32(12):1880-1884, 2022.
Article in English, Chinese | CAB Abstracts | ID: covidwho-2034518

ABSTRACT

OBJECTIVE: To explore a new method for detecting respiratory viruses by extracting residual virus on mask, and verify its reliability and sensitivity. METHODS: The novel coronavirus analogs-s La Sota strains of chicken Newcastle disease virus and H120 strains of infectious bronchitis virus with different diluted concentrations were sprayed onto surgical masks and N95 masks through a respiratory simulator, and they were left standing at room temperature for 2 hours and 12 hours, respectively. The cDNA and its amplification cycle(CT) values of the nucleoocapsid protein(N) of chicken Newcastle disease virus and the nucleoprotein(NP) genes of infectious bronchitis virus were detected by ordinary polymerase chain reaction(PCR) and quantitative real-time PCR(qRT-PCR). The minimum detectable virus concentration and viral content in masks under different retention times were compared. RESULTS: The gene bands of the Newcastle disease virus La Sota strains and the infectious bronchitis virus H120 strains were detected on the masks stored for different times, and the total RNA of the virus had good amplification curves in the range of 10 pg-10 ng. The mean CT values of N gene and NP gene of the residual virus on the general medical surgical mask and N95 masks placed for 2 h were 22.547+or-0.342,23.698+or-0.501 and 22.855+or-0.308,24.036+or-0.338, respectively. However, only part of them could be detected after 12 h. respectively, and there was no significant difference in CT values between the two masks during the same period of time(P2 h=0.452, P12 h=0.355). The minimum detectable concentration of virus in the masks was 1:800, and the number of residual viruses on the mask that can be detected was 6.75x10~3. CONCLUSION: The method of screening coronavirus by detecting virus residues on masks within 2 hours was feasible and suitable for medical surgical masks and N95 masks, which can be used for preliminary screening of respiratory viruses.

8.
Zhongguo Yufang Shouyi Xuebao / Chinese Journal of Preventive Veterinary Medicine ; 44(3):346-346, 2022.
Article in English, Chinese | CAB Abstracts | ID: covidwho-2034493

ABSTRACT

The new coronavirus (SARS-CoV-2) is raging around the world, infecting more than 460 million people and killing more than 6 million people, posing a serious threat to human health. Analyzing the pathogenic mechanism of the virus and discovering new drug targets are the keys to the development of antiviral drugs. Similar to the envelope proteins of many important viruses such as Ebola virus and Marburg virus, the spike (S) protein of SARS-CoV-2 relies on the cleavage and processing of cellular furin to mature during infection, and then make the virus infective, so furin is an important potential target for antiviral therapy. However, the regulation mechanism of furin enzyme activity in cells under physiological and infection conditions is not yet very clear.

9.
Journal of Biotech Research ; 13:177-188, 2022.
Article in English | ProQuest Central | ID: covidwho-2033805

ABSTRACT

The 3C protease is distinguished from most proteases due to the presence of cysteine nucleophile that plays an essential role in viral replication. This peculiar structure encompassed with its role in viral replication has promoted 3C protease as an interesting target for therapeutic agents in the treatment of diseases caused by human rhinovirus (HRV). However, the molecular mechanisms surrounding the chirality of inhibitors of HRV 3C protease remain unresolved. Herein using in silico techniques such molecular dynamic simulation and binding free estimations via molecular mechanics poisson-boltzmann surface area (MM/PBSA), we present a comprehensive molecular dynamics study of the comparison of two potent inhibitors, SG85 and rupintrivir, complexed with HRV3C protease. The binding free energy studies revealed a higher binding affinity for SG85 of 58.853 kcal/mol than that for rupintrivir of 54.0873 kcal/mol and this was found to be in correlation with the experimental data. The energy decomposition analysis showed that residues Leu 127, Thr 142, Ser 144, Gly 145, Tyr 146, Cys 147, His 161, Val 162, Gly 163, Gly 164, Asn 165, and Phe 170 largely contributed to the binding of SG85, whereas His 40, Leu 127, and Gly 163 impacted the binding of rupintrivir. The results further showed that His 40, Glu 71, Leu 127, Cys 147, Gly 163, and Gyl 164 were crucial residues that played a key role in ligand-enzyme binding, and amongst these crucial residues, His 40, Glu 71, and Cys 147 appeared to be conserved in the active site of HRV-3C protease when bound by both inhibitors. These findings provided a comprehensive understanding of the dynamics and structural features and would serve as guidance in the design and development of potent novel inhibitors of HRV.

10.
Pathology - Research and Practice ; 238:154128, 2022.
Article in English | ScienceDirect | ID: covidwho-2031630

ABSTRACT

In recent years, the COVID-19 pandemic has become one of the most crucial scientific issues in the world, and efforts to eradicate the disease are still ongoing. The acute inflammatory reaction associated with this disease is associated with several complications such as cytokine storm, multiple organ damage, lung fibrosis, and blood clots. PTX3, as part of the humoral innate immune systems, is one of the acute-phase proteins that perform various functions, such as modulating inflammation, repairing tissue, and recruiting immune cells. PTX3 is increased in people with SARS-CoV-2, and its level decreases with proper treatment. Therefore, it can be regarded as a suitable marker for the prognosis of the COVID-19 and evaluating the effectiveness of the treatment method applied. However, some studies have shown that PTX3 can be a double-edged sword and develop tumors by providing an immunosuppressive environment.

11.
Microbiological Research ; : 127204, 2022.
Article in English | ScienceDirect | ID: covidwho-2031569

ABSTRACT

The global COVID-19 outbreak has returned with the identification of the SARS-CoV-2 Omicron variant (B.1.1.529) after appearing to be persistently spreading for the more than past two years. In comparison to prior SARS-CoV-2 variants, this new variant revealed a significant amount of mutation. This novel variety may have a greater rate of transmissibility which might impede the effectiveness of current diagnostic equipment as well as vaccination efficacy and also impede immunotherapies (Antibody / monoclonal antibody based). WHO designated B.1.1.529 as a variant of concern on November 26, 2021, identified as Omicron. The Omicron variant transmission method and severity, on the other hand, are well defined. The global spread of Omicron, which has now seized many nations, has resulted in numerous speculations regarding its origin and degree of infectivity. The following sections will go over its potential for transmission, omicron structure, and impact on COVID-19 vaccines, how it is different from delta variant and diagnostics.

12.
Analytica Chimica Acta ; : 340394, 2022.
Article in English | ScienceDirect | ID: covidwho-2031063

ABSTRACT

β-coronaviruses (β-CoVs), representative with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), depend on their highly glycosylated spike proteins to mediate cell entry and membrane fusion. Compared with the extensively identified N-glycosylation, less is known about O-glycosylation of β-CoVs S proteins, let alone its biological functions. Herein we comprehensively characterized O-glycosylation of five recombinant β-CoVs S1 subunits and revealed the macro- and micro-heterogeneity nature of site-specific O-glycosylation. We also uncovered the O-glycosylation differences between SARS-CoV-2 and its natural D614G mutant on functional domains. This work describes the systematic O-glycosylation analysis of β-CoVs S1 proteins and will help to guide the related vaccines and antiviral drugs development.

13.
Physiological Reports ; 10(17), 2022.
Article in English | ProQuest Central | ID: covidwho-2030378

ABSTRACT

Split ventilation (using a single ventilator to ventilate multiple patients) is technically feasible. However, connecting two patients with acute respiratory distress syndrome (ARDS) and differing lung mechanics to a single ventilator is concerning. This study aimed to: (1) determine functionality of a split ventilation system in benchtop tests, (2) determine whether standard ventilation would be superior to split ventilation in a porcine model of ARDS and (3) assess usability of a split ventilation system with minimal specific training. The functionality of a split ventilation system was assessed using test lungs. The usability of the system was assessed in simulated clinical scenarios. The feasibility of the system to provide modified lung protective ventilation was assessed in a porcine model of ARDS (n = 30). In bench testing a split ventilation system independently ventilated two test lungs under conditions of varying compliance and resistance. In usability tests, a high proportion of naïve operators could assemble and use the system. In the porcine model, modified lung protective ventilation was feasible with split ventilation and produced similar respiratory mechanics, gas exchange and biomarkers of lung injury when compared to standard ventilation. Split ventilation can provide some elements of lung protective ventilation and is feasible in bench testing and an in vivo model of ARDS.

14.
Magnetic Resonance ; 3(2):169-182, 2022.
Article in English | ProQuest Central | ID: covidwho-2030255

ABSTRACT

The paramagnetism of a lanthanoid tag site-specifically installed on a protein provides a rich source of structural information accessible by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy. Here we report a lanthanoid tag for selective reaction with cysteine or selenocysteine with formation of a (seleno)thioether bond and a short tether between the lanthanoid ion and the protein backbone. The tag is assembled on the protein in three steps, comprising (i) reaction with 4-fluoro-2,6-dicyanopyridine (FDCP);(ii) reaction of the cyano groups withα-cysteine, penicillamine or β-cysteine to complete the lanthanoid chelating moiety;and (iii) titration with a lanthanoid ion. FDCP reacts much faster with selenocysteine than cysteine, opening a route for selective tagging in the presence of solvent-exposed cysteine residues. Loaded with Tb3+ and Tm3+ ions, pseudocontact shifts were observed in protein NMR spectra, confirming that the tag delivers good immobilisation of the lanthanoid ion relative to the protein, which was also manifested in residual dipolar couplings. Completion of the tag with different 1,2-aminothiol compounds resulted in different magnetic susceptibility tensors. In addition, the tag proved suitable for measuring distance distributions in double electron–electron resonance experiments after titration with Gd3+ ions.

15.
Pakistan Journal of Biological Sciences ; 25(9):867-874, 2022.
Article in English | MEDLINE | ID: covidwho-2030108

ABSTRACT

Background and

16.
13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, BCB 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2029545

ABSTRACT

During normal protein synthesis, the ribosome shifts along the messenger RNA (mRNA) by exactly three nucleotides for each amino acid added to the protein being translated. However, in special cases, the sequence of the mRNA somehow induces the ribosome to slip, which shifts the "reading frame"in which the mRNA is translated, and gives rise to an otherwise unexpected protein. Such "programmed frameshifts"are well-known in viruses, including coronavirus, and a few cases of programmed frameshifting are also known in cellular genes. However, there is no good way, either experimental or informatic, to identify novel cases of programmed frameshifting. Thus it is possible that substantial numbers of cellular proteins generated by programmed frameshifting in human and other organisms remain unknown. Here, we build on prior works observing that data from ribosome profiling can be analyzed for anomalies in mRNA reading frame periodicity to identify putative programmed frameshifts. We develop a statistical framework to identify all likely (even for very low frameshifting rates) frameshift positions in a genome. We also develop a frameshift simulator for ribosome profiling data to verify our algorithm. We show high sensitivity of prediction on the simulated data, retrieving 97.4% of the simulated frameshifts. Furthermore, our method found all three of the known yeast genes with programmed frameshifts. Our results suggest there could be a large number of un-Annotated alternative proteins in the yeast genome, generated by programmed frameshifting. This motivates further study and parallel investigations in the human genome. © 2022 ACM.

17.
2nd International Conference on Medical Imaging and Additive Manufacturing, ICMIAM 2022 ; 12179, 2022.
Article in English | Scopus | ID: covidwho-2029448

ABSTRACT

Plasmonic nanobiosensors have an enormous application range. It has the capacity to detect a wide variety of substances including metal, protein and even nucleic acids due to the superiority of SPR and LSPR. Plasmonic biosensors have been widely applied in the field of disease diagnosis, environmental conservation and food safety, eliminating barriers of traditional diagnosis methods and providing sensitive, quick and label-free devices. The applications of plasmonic biosensors in detection of many concerned diseases like cancer and SARS-CoV-2 are making an improvement on our medical condition. In the field of environmental protection, plasmonic-based biosensors also show great potential. They can efficiently detect two main types of contaminants, inorganic heavy metals involving Pb, Cd, As and Hg, and organic pollutants like polycyclic aromatic hydrocarbons (PAHs). Plasmonic biosensors could also overcome challenges on food allergen detection. This paper mainly focusses on SPR and LSPR-based nanobiosensors' application in environmental protection, food safety and health-care. © 2022 SPIE. Downloading of the is permitted for personal use only.

18.
Rna Biology ; 19(1):1019-1044, 2022.
Article in English | MEDLINE | ID: covidwho-2028922

ABSTRACT

Similar to other RNA viruses, the emergence of Betacoronavirus relies on cross-species viral transmission, which requires careful health surveillance monitoring of protein-coding information as well as genome-wide analysis. Although the evolutionary jump from natural reservoirs to humans may be mainly traced-back by studying the effect that hotspot mutations have on viral proteins, it is largely unexplored if other impacts might emerge on the structured RNA genome of Betacoronavirus. In this survey, the protein-coding and viral genome architecture were simultaneously studied to uncover novel insights into cross-species horizontal transmission events. We analysed 1,252,952 viral genomes of SARS-CoV, MERS-CoV, and SARS-CoV-2 distributed across the world in bats, intermediate animals, and humans to build a new landscape of changes in the RNA viral genome. Phylogenetic analyses suggest that bat viruses are the most closely related to the time of most recent common ancestor of Betacoronavirus, and missense mutations in viral proteins, mainly in the S protein S1 subunit: SARS-CoV (G > T;A577S);MERS-CoV (C > T;S746R and C > T;N762A);and SARS-CoV-2 (A > G;D614G) appear to have driven viral diversification. We also found that codon sites under positive selection on S protein overlap with non-compensatory mutations that disrupt secondary RNA structures in the RNA genome complement. These findings provide pivotal factors that might be underlying the eventual jumping the species barrier from bats to intermediate hosts. Lastly, we discovered that nearly half of the Betacoronavirus genomes carry highly conserved RNA structures, and more than 90% of these RNA structures show negative selection signals, suggesting essential functions in the biology of Betacoronavirus that have not been investigated to date. Further research is needed on negatively selected RNA structures to scan for emerging functions like the potential of coding virus-derived small RNAs and to develop new candidate antiviral therapeutic strategies.

19.
Scientific Reports ; 12(1):14972, 2022.
Article in English | MEDLINE | ID: covidwho-2028722

ABSTRACT

During COVID-19 pandemic, mutations of SARS-CoV-2 produce new strains that can be more infectious or evade vaccines. Viral RNA mutations can arise from misincorporation by RNA-polymerases and modification by host factors. Analysis of SARS-CoV-2 sequence from patients showed a strong bias toward C-to-U mutation, suggesting a potential mutational role by host APOBEC cytosine deaminases that possess broad anti-viral activity. We report the first experimental evidence demonstrating that APOBEC3A, APOBEC1, and APOBEC3G can edit on specific sites of SARS-CoV-2 RNA to produce C-to-U mutations. However, SARS-CoV-2 replication and viral progeny production in Caco-2 cells are not inhibited by the expression of these APOBECs. Instead, expression of wild-type APOBEC3 greatly promotes viral replication/propagation, suggesting that SARS-CoV-2 utilizes the APOBEC-mediated mutations for fitness and evolution. Unlike the random mutations, this study suggests the predictability of all possible viral genome mutations by these APOBECs based on the UC/AC motifs and the viral genomic RNA structure.

20.
Signal Transduction and Targeted Therapy ; 7(1):318, 2022.
Article in English | MEDLINE | ID: covidwho-2028663

ABSTRACT

Excessive inflammatory responses contribute to the pathogenesis and lethality of highly pathogenic human coronaviruses, but the underlying mechanism remains unclear. In this study, the N proteins of highly pathogenic human coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), middle east respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), were found to bind MASP-2, a key serine protease in the lectin pathway of complement activation, resulting in excessive complement activation by potentiating MBL-dependent MASP-2 activation, and the deposition of MASP-2, C4b, activated C3 and C5b-9. Aggravated inflammatory lung injury was observed in mice infected with adenovirus expressing the N protein. Complement hyperactivation was also observed in SARS-CoV-2-infected patients. Either blocking the N protein:MASP-2 interaction, MASP-2 depletion or suppressing complement activation can significantly alleviate N protein-induced complement hyperactivation and lung injury in vitro and in vivo. Altogether, these data suggested that complement suppression may represent a novel therapeutic approach for pneumonia induced by these highly pathogenic coronaviruses.

SELECTION OF CITATIONS
SEARCH DETAIL