Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
54th ACM Technical Symposium on Computer Science Education, SIGCSE 2023 ; 1:11-17, 2023.
Article in English | Scopus | ID: covidwho-2266869


Underrepresented students face many significant challenges in their education. In particular, they often have a harder time than their peers from majority groups in building long-term high-quality study groups. This challenge is exacerbated in remote-learning scenarios, where students are unable to meet face-to-face and must rely on pre-existing networks for social support. We present a scalable system that removes structural obstacles faced by underrepresented students and supports all students in building inclusive and flexible study groups. One of our main goals is to make the traditionally informal and unstructured process of finding study groups for homework more equitable by providing a uniform but lightweight structure. We aim to provide students from underrepresented groups an experience that is similar in quality to that of students from majority groups. Our process is unique in that it allows students the opportunity to request group reassignments during the semester if they wish. Unlike other collaboration tools our system is not mandatory and does not use peer-evaluation. We trialed our approach in a 1000+ student introductory Engineering and Computer Science course that was conducted entirely online during the COVID-19 pandemic. We find that students from underrepresented backgrounds were more likely to ask for group-matching support compared to students from majority groups. At the same time, underrepresented students that we matched into study groups had group experiences that were comparable to students we matched from majority groups. B-range students in high-comfort and high-quality groups had improved learning outcomes. © 2023 Owner/Author.

28th ACM SIGSAC Conference on Computer and Communications Security, CCS 2022 ; : 3257-3259, 2022.
Article in English | Scopus | ID: covidwho-2162011


COVID-19 has altered the landscape of medical record issuing and verification. Multiple challenges have arisen in this new era as individuals are now required to prove their health status for traveling, working, or simply eating at a restaurant. Record verification across country borders is particularly hard to achieve as it requires collaboration at an international level, sharing potentially sensitive medical data. In this work, we propose VaxPass, a scalable system for COVID-19 record issuing and verification that facilitates this collaboration with minimal data leakage. At the core of our design lies a 2-tier blockchain architecture that allows individual issuing authorities to maintain their own 1st-level blockchain and only upload a small digest of their records, periodically, on the 2nd-level. Crucially, a verifier can check the validity of a certificate without having access to the 1st-level blockchain where the records actually reside. Our system also includes a mobile application and a web client. As we demonstrate, its performance scales well with the number of participants, making this the first solution able to support real-life inspired needs for such a system, while maintaining confidentiality of the medical data solely to privy entities. © 2022 Owner/Author.

Digital Government: Research and Practice ; 2(1), 2021.
Article in English | Scopus | ID: covidwho-1772333


The COVID-19 public health emergency caused widespread economic shutdown and unemployment. The resulting surge in Unemployment Insurance claims threatened to overwhelm the legacy systems state workforce agencies rely on to collect, process, and pay claims. In Rhode Island, we developed a scalable cloud solution to collect Pandemic Unemployment Assistance claims as part of a new program created under the Coronavirus Aid, Relief and Economic Security Act to extend unemployment benefits to independent contractors and gig-economy workers not covered by traditional Unemployment Insurance. Our new system was developed, tested, and deployed within 10 days following the passage of the Coronavirus Aid, Relief and Economic Security Act, making Rhode Island the first state in the nation to collect, validate, and pay Pandemic Unemployment Assistance claims. A cloud-enhanced interactive voice response system was deployed a week later to handle the corresponding surge in weekly certifications for continuing unemployment benefits. Cloud solutions can augment legacy systems by offloading processes that are more efficiently handled in modern scalable systems, reserving the limited resources of legacy systems for what they were originally designed. This agile use of combined technologies allowed Rhode Island to deliver timely Pandemic Unemployment Assistance benefits with an estimated cost savings of $502,000 (representing a 411% return on investment). © 2020 Owner/Author.