Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
24th International Conference on Human-Computer Interaction, HCII 2022 ; 13517 LNCS:142-165, 2022.
Article in English | Scopus | ID: covidwho-2173838


The increasingly rapid spread of information about COVID-19 on the web calls for automatic measures of credibility assessment [18]. If large parts of the population are expected to act responsibly during a pandemic, they need information that can be trusted [20]. In that context, we model the credibility of texts using 25 linguistic phenomena, such as spelling, sentiment and lexical diversity. We integrate these measures in a graphical interface and present two empirical studies to evaluate its usability for credibility assessment on COVID-19 news. Raw data for the studies, including all questions and responses, has been made available to the public using an open license: The user interface prominently features three sub-scores and an aggregation for a quick overview. Besides, metadata about the concept, authorship and infrastructure of the underlying algorithm is provided explicitly. Our working definition of credibility is operationalized through the terms of trustworthiness, understandability, transparency, and relevance. Each of them builds on well-established scientific notions [41, 65, 68] and is explained orally or through Likert scales. In a moderated qualitative interview with six participants, we introduce information transparency for news about COVID-19 as the general goal of a prototypical platform, accessible through an interface in the form of a wireframe [43]. The participants' answers are transcribed in excerpts. Then, we triangulate inductive and deductive coding methods [19] to analyze their content. As a result, we identify rating scale, sub-criteria and algorithm authorship as important predictors of the usability. In a subsequent quantitative online survey, we present a questionnaire with wireframes to 50 crowdworkers. The question formats include Likert scales, multiple choice and open-ended types. This way, we aim to strike a balance between the known strengths and weaknesses of open vs. closed questions [11]. The answers reveal a conflict between transparency and conciseness in the interface design: Users tend to ask for more information, but do not necessarily make explicit use of it when given. This discrepancy is influenced by capacity constraints of the human working memory [38]. Moreover, a perceived hierarchy of metadata becomes apparent: the authorship of a news text is more important than the authorship of the algorithm used to assess its credibility. From the first to the second study, we notice an improved usability of the aggregated credibility score's scale. That change is due to the conceptual introduction before seeing the actual interface, as well as the simplified binary indicators with direct visual support. Sub-scores need to be handled similarly if they are supposed to contribute meaningfully to the overall credibility assessment. By integrating detailed information about the employed algorithm, we are able to dissipate the users' doubts about its anonymity and possible hidden agendas. However, the overall transparency can only be increased if other more important factors, like the source of the news article, are provided as well. Knowledge about this interaction enables software designers to build useful prototypes with a strong focus on the most important elements of credibility: source of text and algorithm, as well as distribution and composition of algorithm. All in all, the understandability of our interface was rated as acceptable (78% of responses being neutral or positive), while transparency (70%) and relevance (72%) still lag behind. This discrepancy is closely related to the missing article metadata and more meaningful visually supported explanations of credibility sub-scores. The insights from our studies lead to a better understanding of the amount, sequence and relation of information that needs to be provided in interfaces for credibility assessment. In particular, our integration of software metadata contributes to the more holistic notion of credibility [47, 72] that has become popular in recent years Besides, it paves the way for a more thoroughly informed interaction between humans and machine-generated assessments, anticipating the users' doubts and concerns [39] in early stages of the software design process [37]. Finally, we make suggestions for future research, such as proactively documenting credibility-related metadata for Natural Language Processing and Language Technology services and establishing an explicit hierarchical taxonomy of usability predictors for automatic credibility assessment. © 2022, Springer Nature Switzerland AG.

33rd ACM Conference on Hypertext and Social Media, HT 2022 - Co-located with ACM WebSci 2022 and ACM UMAP 2022 ; : 80-90, 2022.
Article in English | Scopus | ID: covidwho-1962412


In the context of COVID-19 pandemic, social networks such as Facebook, Twitter, YouTube and Instagram stand out as important sources of information. Among those, YouTube, as the largest and most engaging online media consumption platform, has a large influence in the spread of information and misinformation, which makes it important to study how the platform deals with the problems that arise from disinformation, as well as how its users interact with different types of content. Considering that United States (USA) and Brazil (BR) are two countries with the highest COVID-19 death tolls, we asked the following question: What are the nuances of vaccination campaigns in the two countries? With that in mind, we engage in a comparative analysis of pro and anti-vaccine movements on YouTube. We also investigate the role of YouTube in countering online vaccine misinformation in USA and BR. For this means, we monitored the removal of vaccine related content on the platform and also applied various techniques to analyze the differences in discourse and engagement in pro and anti-vaccine "comment sections". We found that American anti-vaccine content tend to lead to considerably more toxic and negative discussion than their pro-vaccine counterparts while also leading to 18% higher user-user engagement, while Brazilian anti-vaccine content was significantly less engaging. We also found that pro-vaccine and anti-vaccine discourses are considerably different as the former is associated with conspiracy theories (e.g. ccp), misinformation and alternative medicine (e.g. hydroxychloroquine), while the latter is associated with protective measures. Finally, it was observed that YouTube content removals are still insufficient, with only approximately 16% of the anti-vaccine content being removed by the end of the studied period, with the United States registering the highest percentage of removed anti-vaccine content(34%) and Brazil registering the lowest(9.8%). © 2022 ACM.