Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 489
Filter
1.
Molecules ; 27(21)2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2099666

ABSTRACT

As a cellular protease, transmembrane serine protease 2 (TMPRSS2) plays roles in various physiological and pathological processes, including cancer and viral entry, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, we conducted expression, mutation, and prognostic analyses for the TMPRSS2 gene in pan-cancers as well as in COVID-19-infected lung tissues. The results indicate that TMPRSS2 expression was highest in prostate cancer. A high expression of TMPRSS2 was significantly associated with a short overall survival in breast invasive carcinoma (BRCA), sarcoma (SARC), and uveal melanoma (UVM), while a low expression of TMPRSS2 was significantly associated with a short overall survival in lung adenocarcinoma (LUAD), demonstrating TMPRSS2 roles in cancer patient susceptibility and severity. Additionally, TMPRSS2 expression in COVID-19-infected lung tissues was significantly reduced compared to healthy lung tissues, indicating that a low TMPRSS2 expression may result in COVID-19 severity and death. Importantly, TMPRSS2 mutation frequency was significantly higher in prostate adenocarcinoma (PRAD), and the mutant TMPRSS2 pan-cancer group was significantly associated with long overall, progression-free, disease-specific, and disease-free survival rates compared to the wild-type (WT) TMPRSS2 pan-cancer group, demonstrating loss of functional roles due to mutation. Cancer cell lines were treated with small molecules, including cordycepin (CD), adenosine (AD), thymoquinone (TQ), and TQFL12, to mediate TMPRSS2 expression. Notably, CD, AD, TQ, and TQFL12 inhibited TMPRSS2 expression in cancer cell lines, including the PC3 prostate cancer cell line, implying a therapeutic role for preventing COVID-19 in cancer patients. Together, these findings are the first to demonstrate that small molecules, such as CD, AD, TQ, and TQFL12, inhibit TMPRSS2 expression, providing novel therapeutic strategies for preventing COVID-19 and cancers.


Subject(s)
COVID-19 , Lung Neoplasms , Prostatic Neoplasms , Male , Humans , SARS-CoV-2 , COVID-19/drug therapy , COVID-19/genetics , Prognosis , Adenosine , Mutation , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Serine Endopeptidases/genetics
2.
Microbiol Spectr ; : e0349022, 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2097941

ABSTRACT

We newly generated two human induced pluripotent stem cell (hiPSC)-derived spheroid lines, termed Spheroids_4MACE2-TMPRSS2 and Spheroids_15M63ACE2-TMPRSS2, both of which express angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2), which are critical for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Both spheroids were highly susceptible to SARS-CoV-2 infection, and two representative anti-SARS-CoV-2 agents, remdesivir and 5h (an inhibitor of SARS-CoV-2's main protease), inhibited the infectivity and replication of SARS-CoV-2 in a dose-dependent manner, suggesting that these human-derived induced spheroids should serve as valuable target cells for the evaluation of anti-SARS-CoV-2 activity. IMPORTANCE The hiPSC-derived spheroids we generated are more expensive to obtain than the human cell lines currently available for anti-SARS-CoV-2 drug evaluation, such as Calu-3 cells; however, the spheroids have better infection susceptibility than the existing human cell lines. Although we are cognizant that there are human lung (and colonic) organoid models for the study of SARS-CoV-2, the production of those organoids is greatly more costly and time consuming than the generation of human iPSC-derived spheroid cells. Thus, the addition of human iPSC-derived spheroids for anti-SARS-CoV-2 drug evaluation studies could provide the opportunity for more comprehensive interpretation of the antiviral activity of compounds against SARS-CoV-2.

3.
J Biol Chem ; : 102643, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2086373

ABSTRACT

Transmembrane protease serine 2 (TMPRSS2) is a membrane-bound protease expressed in many human epithelial tissues, including the airway and lung. TMPRSS2-mediated cleavage of viral spike (S) protein is a key mechanism in severe acute respiratory syndrome (SARS) coronavirus (CoV)-2 activation and host cell entry. To date, the cellular mechanisms that regulate TMPRSS2 activity and cell surface expression are not fully characterized. In this study, we examined two major posttranslational events, zymogen activation and N-glycosylation, in human TMPRSS2. In experiments with human embryonic kidney 293 (HEK293), bronchial epithelial 16HBE, and lung alveolar epithelial A549 cells, we found that TMPRSS2 was activated via intracellular autocatalysis and that this process was blocked in the presence of hepatocyte growth factor activator inhibitors 1 and 2. By glycosidase digestion and site-directed mutagenesis, we showed that human TMPRSS2 was N-glycosylated. N-glycosylation at an evolutionarily conserved site in the scavenger receptor cysteine-rich domain was required for calnexin-assisted protein folding in the ER and subsequent intracellular trafficking, zymogen activation, and cell surface expression. Moreover, we showed that TMPRSS2 cleaved SARS-CoV-2 S protein intracellularly in HEK293 cells. These results provide new insights into the cellular mechanism in regulating TMPRSS2 biosynthesis and function. Our findings should help to understand the role of TMPRSS2 in major respiratory viral diseases.

4.
Chem Zvesti ; : 1-20, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2085555

ABSTRACT

The current viral pandemic, coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), creates health, mental, economic, and other serious challenges that are better to say global crisis. Despite the existence of successful vaccines, the possible mutations which can lead to the born of novel and possibly more dangerous variants of the virus as well as the absence of definitive treatment for this potentially fatal multiple-organ infection in critically ill patients make us keep searching. Theoretically targeting human and viral receptors and enzymes via molecular docking and dynamics simulations can be considered a wise, rational, and efficient way to develop therapeutic agents against COVID-19. In this way, The RNA-dependent RNA polymerase (RdRP), main protease, and spike glycoprotein of SARS-CoV-2 as well as the human angiotensin-converting enzyme 2 receptor and transmembrane serine protease 2 are the most discussed and studied targets that play essential roles in the viral life and infection cycle. In the current in silico investigation, the guanidine functionality containing drugs and medicinal substances such as metformin, famotidine, neuraminidase inhibitors, antimalarial medications, anticancer drug imatinib, CGP compounds, and human serine protease inhibitor camostat were studied against the above-mentioned therapeutic targets and most of them (especially imatinib) have revealed an incredible spectrum of free docking scores and MD results. The current in silico investigation that its novel perspective of view is corroborated by the different experimental and clinical evaluations, confirms that the guanidine moiety can be considered as a missing promising pharmacophore in drug design and development approaches against SARS-CoV-2. Considering the chemical potency of this polyamine group in chemical interaction creation, the observed outcomes in this virtual screening were not surprising. On the other hand, the guanidine functional group has unique physico-chemical properties such as basicity that can make the target cells intracellular pH undesirable for the virus entry, uncoating, and cytosolic lifecycle. According to the obtained results in the current study that are interestingly confirmed by the previously reported efficacy of some the guanidine carrying drugs in COVID-19, guanidine as a potential multi-target anti-SARS-CoV-2 functional scaffold deserves further comprehensive investigations. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-022-02528-y.

5.
Int J Mol Sci ; 23(20)2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2082255

ABSTRACT

The SARS-CoV-2 virus can utilize host cell proteases to facilitate cell entry, whereby the Spike (S) protein is cleaved at two specific sites to enable membrane fusion. Furin, transmembrane protease serine 2 (TMPRSS2), and cathepsin L (CatL) are the major proteases implicated, and are thus targets for anti-viral therapy. The human serpin (serine protease inhibitor) alpha-1 antitrypsin (A1AT) shows inhibitory activity for TMPRSS2, and has previously been found to suppress cell infection with SARS-CoV-2. Here, we have generated modified serpin inhibitors with increased specificity for these cellular proteases. Using SerpinB3 (SCCA-1), a cross-class inhibitor of CatL, as a scaffold, we have designed and produced reactive centre loop (RCL) variants to more specifically target both furin and TMPRSS2. Two further variants were generated by substituting the RCL P7-P1 with the spike protein S1/S2 cleavage site from either SARS-CoV-2 alpha or delta (P681R) sequences. Altered inhibitory specificity of purified recombinant proteins was verified in protease assays, with attenuated CatL inhibition and gain of furin or TMPRSS2 inhibition, as predicted, and modified serpins were shown to block S protein cleavage in vitro. Furthermore, the serpin variants were able to inhibit S-pseudoparticle entry into A549-ACE2-TMPRSS2 cells and suppress SARS-CoV-2 replication in Vero E6 cells expressing TMPRSS2. The construct designed to inhibit TMPRSS2 (B3-TMP) was most potent. It was more effective than A1AT for TMPRSS2 enzyme inhibition (with an eighteen-fold improvement in the second order inhibition rate constant) and for blocking SARS-CoV-2 viral replication. These findings advance the potential for serpin RCL mutagenesis to generate new inhibitors, and may lead to novel anti-viral biological molecules.


Subject(s)
COVID-19 , Serpins , Humans , SARS-CoV-2 , Furin/genetics , Furin/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Serpins/genetics , Serpins/pharmacology , Cathepsin L/metabolism , Angiotensin-Converting Enzyme 2 , Virus Internalization , COVID-19/drug therapy , Antiviral Agents/pharmacology , Mutagenesis , Recombinant Proteins , Serine , Serine Endopeptidases/genetics
6.
Genomics Inform ; 20(3): e31, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2080804

ABSTRACT

A pandemic of respiratory disease named coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is reported prostate cancer patients are susceptible to COVID-19 infection. To understand the possible causes of prostate cancer patients' increased vulnerability and mortality from COVID-19 infection, we focused on the two most important agents, transmembrane protease serine subtype 2 (TMPRSS2) and the C-X-C motif 10 (CXCL10). When SARS-CoV-2 binds to the host cell via S protein-angiotensin-converting enzyme-2 receptor interaction, TMPRSS2 contributes in the proteolytic cleavage of the S protein, allowing the viral and cellular membranes to fuse. CXCL10 is a cytokine found in elevated level in both COVID-19 and cancer-causing cytokine storm. We discovered that TMPRSS2 and CXCL10 are overexpressed in prostate cancer and COVID-19 using the UALCAN and GEPIA2 datasets. The functional importance of TMPRSS2 and CXCL10 in prostate cancer development was then determined by analyzing the frequency of genetic changes in their amino acid sequences using the cBioPortal online portal. Finally, we used the PANTHER database to examine the pathology of the targeted genes. We observed that TMPRSS2 and CXCL10, together with their often co-expressed genes, are important in the binding activity and immune responses in prostate cancer and COVID-19 infection, respectively. Finally, we found that TMPRSS2 and CXCL10 are two putative biomarkers responsible for the increased vulnerability and fatality of prostate cancer patients to COVID-19.

7.
J Infect Dis ; 226(8): 1304-1308, 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2077776

ABSTRACT

The omicron variant of severe acute respiratory syndrome coronavirus 2 causes much less olfactory dysfunction than the previous variants. There are several potential mechanisms for how omicron may change tissue tropism and spare olfactory function. The new mutations make omicron more hydrophobic and alkaline than previous variants, which may reduce penetration of the mucus layer. Overall, the new mutations minimally change receptor binding affinity, but entry efficiency into host cells is reduced in cells expressing transmembrane serine protease 2 (TMPRSS2). Because the support cells in the olfactory epithelium abundantly express TMPRSS2, these main target cells in the olfactory epithelium may become infected less by the new omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Anosmia , Humans , Spike Glycoprotein, Coronavirus/metabolism
8.
Med Chem ; 2022 Oct 11.
Article in English | MEDLINE | ID: covidwho-2065285

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2), responsible for generating COVID-19, has spread worldwide and was declared a pandemic by the World Health Organization (WHO) on 11 March 2020, being responsible for various damages to public health, social life, and the economy of countries. Its high infectivity and mutation rates have stimulated researchers and pharmaceutical companies to search for new therapies against this disease. These efforts resulted in several vaccines and the identification of Molnupiravir as an oral treatment against this disease. However, identifying new alternatives and critical information is necessary to fight against this devastating agent. The findings in recent years regarding the structure and biochemistry of SARS-CoV2 are remarkable. In anti-CoV drug discovery, various targets such as structural, non-structural, and host-related proteins are explored. In fact, 3CLpro is the most used among non-structural proteins since this protease cleaves peptide sequences after the glutamine residue, and no human protease has this function. This makes this macromolecule an excellent drug target for discovering new compounds. Another promising target is the transmembrane protease serine 2 (TMPRSS2). Recent studies point to TMPRSS2 as one of the main targets responsible for viral entry, related to the cleavage of the S protein. Similar to cathepsins, TMPRSS2 is also responsible for cleaving the spike protein SARS-CoV2, which binds to the ACE2 receptor. Thus, TMPRSS2 is one of the targets that may represent new alternatives in treating SARS-CoV2. In this context, would discovering a multitarget inhibitor be the new strategy in searching for drugs against SARS-CoV2? For many years, new drug discovery was based on the "one drug, one target" premise, where the biological action is related to interactions with only one biological target. However, this paradigm has been overcome as new evidence of multiple mechanisms of action for a single drug. Finally, this review will present a perspective on drug design based on a multitarget strategy against 3CLpro and TMPRSS2. We hope to provide new horizons for researchers worldwide searching for more effective drugs against this devastating agent.

9.
Kidney Blood Press Res ; 47(9): 565-575, 2022.
Article in English | MEDLINE | ID: covidwho-2064352

ABSTRACT

INTRODUCTION: The angiotensin-converting enzyme 2 (ACE2) as well as the transmembrane protease serine type 2 (TMPRSS2) have been found to play roles in cell entry for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19). SARS-CoV-2 infection risk and severity of COVID-19 might be indicated by the expression of ACE2 and TMPRSS2 in the lung. METHODS: A high-salt diet rat model and renin-angiotensin-aldosterone system (RAAS) blockade were used to test whether these factors affect ACE2 and TMPRSS2 expression in the lung. A normal (0.3% NaCl), a medium (2% NaCl), or a high (8% NaCl) salt diet was fed to rats for 12 weeks, along with enalapril or telmisartan, before examining the lung for histopathological alteration. Using immunofluorescence and qRT-PCR, the localization as well as mRNA expression of ACE2 and TMPRSS2 were investigated. RESULTS: The findings provide evidence that both TMPRSS2 and ACE2 are highly expressed in bronchial epithelial cells as well as ACE2 was also expressed in alveolar type 2 cells. High-salt diet exposure in rats leads to elevated ACE2 expression on protein level. Treatment with RAAS blockers had no effect on lung tissue expression of ACE2 and TMPRSS2. CONCLUSIONS: These findings offer biological support regarding the safety of these drugs that are often prescribed to COVID-19 patients with cardiovascular comorbidity. High salt intake, on the other hand, might adversely affect COVID-19 outcome. Our preclinical data should stimulate clinical studies addressing this point of concern.


Subject(s)
COVID-19 , Renin-Angiotensin System , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Enalapril/pharmacology , Lung , RNA, Messenger/metabolism , Rats , Renin-Angiotensin System/drug effects , Serine Endopeptidases , Sodium Chloride, Dietary/adverse effects , Telmisartan/pharmacology
10.
J Leukoc Biol ; 112(3): 569-576, 2022 09.
Article in English | MEDLINE | ID: covidwho-2047706

ABSTRACT

Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV2), which causes the disease COVID-19, has caused an unprecedented global pandemic. Angiotensin-converting enzyme 2 (ACE2) is the major cellular receptor for SARS-CoV2 entry, which is facilitated by viral Spike priming by cellular TMPRSS2. Macrophages play an important role in innate viral defense and are also involved in aberrant immune activation that occurs in COVID-19, and thus direct macrophage infection might contribute to severity of SARS-CoV2 infection. Here, we demonstrate that monocytes and monocyte-derived macrophages (MDM) under in vitro conditions express low-to-undetectable levels of ACE2 and TMPRSS2 and minimal coexpression. Expression of these receptors remained low in MDM induced to different subtypes such as unpolarized, M1 and M2 polarized. Untreated, unpolarized, M1 polarized, and M2 polarized MDM were all resistant to infection with SARS-CoV2 pseudotyped virions. These findings suggest that direct infection of myeloid cells is unlikely to be a major mechanism of SARS-CoV2 pathogenesis. Summary sentence: Monocytes and macrophages express minimal ACE2 and TMPRSS2 and resist SARS-CoV-2 Spike-mediated infection, suggesting direct myeloid cell infection is unlikely a major contributor to pathogenesis.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Macrophages , Monocytes , Serine Endopeptidases , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , Disease Resistance , Humans , Macrophages/metabolism , Macrophages/virology , Monocytes/metabolism , Monocytes/virology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , RNA, Viral , SARS-CoV-2 , Serine Endopeptidases/metabolism
11.
Biochem Biophys Rep ; 32: 101350, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2041588

ABSTRACT

Lung cancer is one of the most frequently diagnosed malignant tumors and the leading cause of cancer-related death worldwide. Mainly, Non-small-cell lung cancer (NSCLC), which accounts for more than eighty-five percent of all lung cancers, consists of two major subtypes: lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). Novel coronavirus disease (COVID-19) affected millions of people caused by acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) around the globe. Lung cancer patients and COVID-19 present unique and unfortunate lethal combinations because the lungs are the primary target organ of SARS-CoV-2 infection. Clinical studies have demonstrated that an over-activated inflammatory response associated with severe COVID-19 cases is characterized by excessive auto-amplifying cytokine release, which is defined as a "cytokine storm." ACE2 and TMPRSS2 receptors play an essential role in SARS-CoV-2 infection; therefore, using in silico analysis, we did correlation analysis with immune infiltration markers in LUAD and LUSC patient groups. Our study identified a promising correlation between immune-modulators and receptor proteins (ACE-2 and TMPRSS2), creating a domain that requires further laboratory studies for clinical authentication.

12.
EBioMedicine ; 84: 104270, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2031243

ABSTRACT

BACKGROUND: Genetically distinct viral variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been recorded since January 2020. The introduction of global vaccine programs has contributed to lower COVID-19 hospitalisation and mortality rates, particularly in developed countries. In late 2021, Omicron BA.1 emerged, with substantially altered genetic differences and clinical effects from other variants of concern. Shortly after dominating global spread in early 2022, BA.1 was supplanted by the genetically distinct Omicron lineage BA.2. A sub-lineage of BA.2, designated BA.5, presently has an outgrowth advantage over BA.2 and other BA.2 sub-lineages. Here we study the neutralisation of Omicron BA.1, BA.2 and BA.5 and pre-Omicron variants using a range of vaccine and convalescent sera and therapeutic monoclonal antibodies using a live virus neutralisation assay. Using primary nasopharyngeal swabs, we also tested the relative fitness of BA.5 compared to pre-Omicron and Omicron viral lineages in their ability to use the ACE2-TMPRSS2 pathway. METHODS: Using low passage clinical isolates of Clade A.2.2, Beta, Delta, BA.1, BA.2 and BA.5, we determined humoral neutralisation in vitro in vaccinated and convalescent cohorts, using concentrated human IgG pooled from thousands of plasma donors, and licensed monoclonal antibody therapies. We then determined infectivity to particle ratios in primary nasopharyngeal samples and expanded low passage isolates in a genetically engineered ACE2/TMPRSS2 cell line in the presence and absence of the TMPRSS2 inhibitor Nafamostat. FINDINGS: Peak responses to 3 doses of BNT162b2 vaccine were associated with a 9-fold reduction in neutralisation for Omicron lineages BA.1, BA.2 and BA.5. Concentrated pooled human IgG from convalescent and vaccinated donors and BNT162b2 vaccination with BA.1 breakthrough infections were associated with greater breadth of neutralisation, although the potency was still reduced 7-fold across all Omicron lineages. Testing of clinical grade antibodies revealed a 14.3-fold reduction using Evusheld and 16.8-fold reduction using Sotrovimab for the BA.5. Whilst the infectivity of BA.1 and BA.2 was attenuated in ACE2/TMPRSS2 entry, BA.5 was observed to be equivalent to that of an early 2020 circulating clade and had greater sensitivity to the TMPRSS2 inhibitor Nafamostat. INTERPRETATION: Observations support all Omicron variants to significantly escape neutralising antibodies across a range of vaccination and/or convalescent responses. Potency of therapeutic monoclonal antibodies is also reduced and differs across Omicron lineages. The key difference of BA.5 from other Omicron sub-variants is the reversion in tropism back to using the well-known ACE2-TMPRSS2 pathway, utilised efficiently by pre-Omicron lineages. Monitoring if these changes influence transmission and/or disease severity will be key for ongoing tracking and management of Omicron waves globally. FUNDING: This work was primarily supported by Australian Medical Foundation research grants MRF2005760 (ST, GM & WDR), MRF2001684 (ADK and ST) and Medical Research Future Fund Antiviral Development Call grant (WDR), Medical Research Future Fund COVID-19 grant (MRFF2001684, ADK & SGT) and the New South Wales Health COVID-19 Research Grants Round 2 (SGT).


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral/metabolism , Antiviral Agents , Australia , BNT162 Vaccine , Benzamidines , COVID-19/therapy , Guanidines , Humans , Immunization, Passive , Immunoglobulin G , Immunotherapy , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Tropism
13.
Biomed Eng Adv ; 4: 100054, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2031157

ABSTRACT

With severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as an emergent human virus since December 2019, the world population is susceptible to coronavirus disease 2019 (COVID-19). SARS-CoV-2 has higher transmissibility than the previous coronaviruses, associated by the ribonucleic acid (RNA) virus nature with high mutation rate, caused SARS-CoV-2 variants to arise while circulating worldwide. Neutralizing antibodies are identified as immediate and direct-acting therapeutic against COVID-19. Single-domain antibodies (sdAbs), as small biomolecules with non-complex structure and intrinsic stability, can acquire antigen-binding capabilities comparable to conventional antibodies, which serve as an attractive neutralizing solution. SARS-CoV-2 spike protein attaches to human angiotensin-converting enzyme 2 (ACE2) receptor on lung epithelial cells to initiate viral infection, serves as potential therapeutic target. sdAbs have shown broad neutralization towards SARS-CoV-2 with various mutations, effectively stop and prevent infection while efficiently block mutational escape. In addition, sdAbs can be developed into multivalent antibodies or inhaled biotherapeutics against COVID-19.

14.
Front Microbiol ; 13: 959577, 2022.
Article in English | MEDLINE | ID: covidwho-2022793

ABSTRACT

SARS-CoV-2, the virus behind the deadly COVID-19 pandemic, continues to spread globally even as vaccine strategies are proving effective in preventing hospitalizations and deaths. However, evolving variants of the virus appear to be more transmissive and vaccine efficacy toward them is waning. As a result, SARS-CoV-2 will continue to have a deadly impact on public health into the foreseeable future. One strategy to bypass the continuing problem of newer variants is to target host proteins required for viral replication. We have used this host-targeted antiviral (HTA) strategy that targets DDX3X (DDX3), a host DEAD-box RNA helicase that is usurped by SARS-CoV-2 for virus production. We demonstrated that targeting DDX3 with RK-33, a small molecule inhibitor, reduced the viral load in four isolates of SARS-CoV-2 (Lineage A, and Lineage B Alpha, Beta, and Delta variants) by one to three log orders in Calu-3 cells. Furthermore, proteomics and RNA-seq analyses indicated that most SARS-CoV-2 genes were downregulated by RK-33 treatment. Also, we show that the use of RK-33 decreases TMPRSS2 expression, which may be due to DDX3s ability to unwind G-quadraplex structures present in the TMPRSS2 promoter. The data presented support the use of RK-33 as an HTA strategy to control SARS-CoV-2 infection, irrespective of its mutational status, in humans.

15.
Front Immunol ; 13: 958581, 2022.
Article in English | MEDLINE | ID: covidwho-2022744

ABSTRACT

In addition to vaccines, there is an urgent need for supplemental antiviral therapeutics to dampen the persistent COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The transmembrane protease serine 2 (TMPRSS2), that is responsible for proteolytic priming of the SARS-CoV-2 spike protein, appears as a rational therapeutic target. Accordingly, selective inhibitors of TMPRSS2 represent potential tools for prevention and treatment of COVID-19. Previously, we identified the human milk glycoprotein lactoferrin as a natural inhibitor of plasminogen conversion to plasmin, a serine protease homologous to TMPRSS2. Here, we tested whether lactoferrin and lactoferricin, a biologically active natural peptide produced by pepsin-mediated digestion of lactoferrin, together with synthetic peptides derived from lactoferrin, were able to block TMPRSS2 and SARS-CoV-2 infection. Particularly, we revealed that both lactoferricin and the N-terminal synthetic peptide pLF1 significantly inhibited: i) proteolytic activity of TMPRSS2 and plasmin, ii) proteolytic processing of the SARS-CoV-2 spike protein, and iii) SARS-CoV-2 infection of SARS-CoV-2-permissive cells. Thus, natural and synthetic peptides derived from lactoferrin represent feasible candidates for supporting prevention and treatment of COVID-19.


Subject(s)
COVID-19 , Lactoferrin , SARS-CoV-2 , Serine Endopeptidases , Serine Proteinase Inhibitors , COVID-19/drug therapy , Fibrinolysin , Humans , Lactoferrin/pharmacology , Pandemics , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Spike Glycoprotein, Coronavirus
16.
J Clin Biochem Nutr ; 71(2): 129-135, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2022551

ABSTRACT

COVID-19 is pandemic since 2020 and further information is necessary on the risk factors associated with the infection of SARS-CoV-2. As an entry mechanism, SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as receptor and transmembrane serine protease 2 (TMPRSS2) to activate fusion with host plasma membrane. Because dysgeusia is an early symptom of COVID-19, we here studied the expression of ACE2 and TMPRSS2 in the tongue and the associated tissues of mice and humans with immunohistochemistry and immunoblot analysis. ACE2 expression was low in the human tongue but was observed in the squamous epithelium, perineurium, arterial wall, salivary glands as well as taste buds. In contrast, mice showed high expression. In sharp contrast, TMPRSS2 expression was high in all the cells mentioned above in humans but relatively low in mice except for salivary glands. We then performed semi-quantitation of immunohistochemistry data of human ACE2 and TMPRSS2 and analyzed for age, sex, alcohol intake, and smoking habit with logistic regression analysis. We found that alcohol intake and female gender were the significant risk factors for increasing TMPRSS2 expression. In conclusion, TMPRSS2 is an important factor to be considered regarding SARS-CoV-2 entry and amplification in the oral cavity, which is promoted through drinking habit.

17.
Struct Chem ; 33(5): 1609-1617, 2022.
Article in English | MEDLINE | ID: covidwho-2014345

ABSTRACT

Scientific insights gained from the severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS) outbreaks have been assisting scientists and researchers in the quest of antiviral drug discovery process against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronaviruses and influenza viruses both rely on the host type 2 transmembrane serine protease, TMPRSS2, for entry and propagation. Recent studies report SARS-CoV-2 also uses TMPRSS2 to enter cells. In the current study, we employed structure-based virtual screening of 1,82,651 natural compounds downloaded from the zin database against the homology model of the TMPRSS2 protein, followed by a molecular dynamics-based simulation to identify potential TMPRSS2 hits. The virtual screening yielded 110 hits with docking scores ranging from -8.654 to -6.775 and glide energies ranging from -55.714 to -29.065 kcal/mol. The binding mode analysis revealed that the hit molecules made H-bond, Pi-Pi stacking and salt bridge contacts with the TMPRSS2 active site residues. MD simulations of the top two hits (ZINC000095912839 and ZINC000085597504) revealed to form a stable complex with TMPRSS2, with a minimal RMSD and RMSF fluctuation. Both the hit structures interacted strongly with the Asp180, Gln183, Gly184, Ser186, Gly207 and Gly209, as predicted by Glide XP docking, and formed a significant H-bond interaction with Ser181 in MD simulation. Among these two, ZINC000095912839 was having the most stable binding interaction with TMPRSS2 of the two molecules. The present study successfully identified TMPRSS2 ligands from a database of zinc natural molecules as potential leads for novel SARs-CoV-2 treatment. Supplementary Inform: The online version contains supplementary material available at 10.1007/s11224-022-01991-3.

18.
J Med Virol ; 2022 Sep 03.
Article in English | MEDLINE | ID: covidwho-2013644

ABSTRACT

Host cell proteases such as TMPRSS2 are critical determinants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tropism and pathogenesis. Here, we show that antithrombin (AT), an endogenous serine protease inhibitor regulating coagulation, is a broad-spectrum inhibitor of coronavirus infection. Molecular docking and enzyme activity assays demonstrate that AT binds and inhibits TMPRSS2, a serine protease that primes the Spike proteins of coronaviruses for subsequent fusion. Consequently, AT blocks entry driven by the Spikes of SARS-CoV, MERS-CoV, hCoV-229E, SARS-CoV-2 and its variants of concern including Omicron, and suppresses lung cell infection with genuine SARS-CoV-2. Thus, AT is an endogenous inhibitor of SARS-CoV-2 that may be involved in COVID-19 pathogenesis. We further demonstrate that activation of AT by anticoagulants, such as heparin or fondaparinux, increases the anti-TMPRSS2 and anti-SARS-CoV-2 activity of AT, suggesting that repurposing of native and activated AT for COVID-19 treatment should be explored.

19.
J Biomed Sci ; 29(1): 65, 2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2009399

ABSTRACT

Unprecedented efforts of the researchers have been witnessed in the recent past towards the development of vaccine platforms for the control of the COVID-19 pandemic. Albeit, vaccination stands as a practical strategy to prevent SARS-CoV-2 infection, supplementing the anti-COVID19 arsenal with therapeutic options such as small molecules/peptides and antibodies is being conceived as a prudent strategy to tackle the emerging SARS-CoV-2 variants. Noteworthy to mention that collective efforts from numerous teams have led to the generation of a voluminous library composed of chemically and mechanistically diverse small molecules as anti-COVID19 scaffolds. This review article presents an overview of medicinal chemistry campaigns and drug repurposing programs that culminated in the identification of a plethora of small molecule-based anti-COVID19 drugs mediating their antiviral effects through inhibition of proteases, S protein, RdRp, ACE2, TMPRSS2, cathepsin and other targets. In light of the evidence ascertaining the potential of small molecule drugs to approach conserved proteins required for the viral replication of all coronaviruses, accelerated FDA approvals are anticipated for small molecules for the treatment of COVID19 shortly. Though the recent attempts invested in this direction in pursuit of enrichment of the anti-COVID-19 armoury (chemical tools) are praiseworthy, some strategies need to be implemented to extract conclusive benefits of the recently reported small molecule viz. (i) detailed preclinical investigation of the generated anti-COVID19 scaffolds (ii) in-vitro profiling of the inhibitors against the emerging SARS-CoV-2 variants (iii) development of assays enabling rapid screening of the libraries of anti-COVID19 scaffold (iv) leveraging the applications of machine learning based predictive models to expedite the anti-COVID19 drug discovery campaign (v) design of antibody-drug conjugates.


Subject(s)
COVID-19 , Vaccines , COVID-19/drug therapy , COVID-19/prevention & control , Humans , Pandemics , Peptides , SARS-CoV-2
20.
Viruses ; 14(9)2022 09 07.
Article in English | MEDLINE | ID: covidwho-2010316

ABSTRACT

SARS-CoV-2 uses the ACE2 receptor and the cellular protease TMPRSS2 for entry into target cells. The present study aimed to establish if the TMPRSS2 polymorphisms are associated with COVID-19 disease. The study included 609 patients with COVID-19 confirmed by RT-PCR test and 291 individuals negative for the SARS-CoV-2 infection confirmed by RT-PCR test and without antibodies anti-SARS-CoV-2. Four TMPRSS2 polymorphisms (rs12329760, rs2298659, rs456298, and rs462574) were determined using the 5'exonuclease TaqMan assays. Under different inheritance models, the rs2298659 (pcodominant2 = 0.018, precessive = 0.006, padditive = 0.019), rs456298 (pcodominant1 = 0.014, pcodominant2 = 0.004; pdominant = 0.009, precessive = 0.004, padditive = 0.0009), and rs462574 (pcodominant1 = 0.017, pcodominant2 = 0.004, pdominant = 0.041, precessive = 0.002, padditive = 0.003) polymorphisms were associated with high risk of developing COVID-19. Two risks (ATGC and GAAC) and two protectives (GAGC and GAGT) haplotypes were detected. High levels of lactic acid dehydrogenase (LDH) were observed in patients with the rs462574AA and rs456298TT genotypes (p = 0.005 and p = 0.020, respectively), whereas, high heart rate was present in patients with the rs462574AA genotype (p = 0.028). Our data suggest that the rs2298659, rs456298, and rs462574 polymorphisms independently and as haplotypes are associated with the risk of COVID-19. The rs456298 and rs462574 genotypes are related to high levels of LDH and heart rate.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Exonucleases , Humans , Lactic Acid , Oxidoreductases , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2/genetics , Serine Endopeptidases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL