Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 5.857
Filter
Add filters

Year range
1.
Inflamm Res ; 71(7-8): 729-739, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1820656

ABSTRACT

The coronavirus pandemic has starkly demonstrated the need to create highly effective vaccines against various viral diseases. The emerging new platforms for vaccine creation (adenovirus vectors and mRNA vaccines) have shown their worth in the fight against the prevention of coronavirus infection. However, adenovirus vectors and mRNA vaccines have a serious disadvantage: as a rule, only the S protein of the coronavirus is presented as an antigen. This tactic for preventing infection allows the ever-mutating virus to escape quickly from the immunity protection provided by such vaccines. Today, viral genomic databases are well-developed, which makes it possible to create new vaccines on a fundamentally new post-genomic platform. In addition, the technology for the synthesis of nucleic acids is currently experiencing an upsurge in demand in various fields of molecular biology. The accumulated experience suggests that the unique genomic sequences of viruses can act as antigens that trigger powerful humoral and cellular immunity. To achieve this effect, the following conditions must be created: the structure of the nucleic acid must be single-stranded, have a permanent 3D nanostructure, and have a unique sequence absent in the vaccinated organism. Oligonucleotide vaccines are able to resist the rapidly changing genomic sequences of RNA viruses by using conserved regions of their genomes to generate a long-term immune response, acting according to the adage that a diamond cuts a diamond. In addition, oligonucleotide vaccines will not contribute to antibody-dependent enhanced infection, since the nucleic acid of the coronavirus is inside the viral particle. It is obvious that new epidemics and pandemics caused by RNA viruses will continue to arise periodically in the human population. The creation of new, safe, and effective platforms for the production of vaccines that can flexibly change and adapt to new subtypes of viruses is very urgent and at this moment should be considered as a strategically necessary task.


Subject(s)
Coronavirus Infections , Nucleic Acids , RNA Viruses , Viral Vaccines , Antibodies, Viral , Diamond , Genomics , Humans , Oligonucleotides
2.
Emerg Infect Dis ; 28(12)2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2099066

ABSTRACT

We report results from serologic surveillance for exposure to SARS-CoV-2 among 1,237 wild rodents and small mammals across Europe. All samples were negative, with the possible exception of 1. Despite suspected potential for human-to-rodent spillover, no evidence of widespread SARS-CoV-2 circulation in rodent populations has been reported to date.Esitämme tulokset serologisesta tutkimuksesta, jossa seulottiin SARS-CoV-2 tartuntojen varalta 1,237 luonnonvaraista jyrsijää ja piennisäkästä eri puolilta Eurooppaa. Kaikki näytteet olivat negatiivisia, yhtä näytettä lukuun ottamatta. SARS-CoV-2:n läikkymisen ihmisistä jyrsijöihin on arveltu olevan mahdollista, mutta todisteet viruksen laajamittaisesta leviämisestä jyrsijäpopulaatioissa puuttuvat.

3.
Emerg Infect Dis ; 28(12)2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2099065

ABSTRACT

We investigated a cluster of SARS-CoV-2 infections in a quarantine hotel in Taiwan in December 2021. The cluster involved 3 case patients who lived in nonadjacent rooms on different floors. They had no direct contact during their stay. By direct exploration of the space above the room ceilings, we found residual tunnels, wall defects, and truncated pipes between their rooms. We conducted a simplified tracer-gas experiment to assess the interconnection between rooms. Aerosol transmission through structural defects in floors and walls in this poorly ventilated hotel was the most likely route of virus transmission. This event demonstrates the high transmissibility of Omicron variants, even across rooms and floors, through structural defects. Our findings emphasize the importance of ventilation and integrity of building structure in quarantine facilities.

4.
Methods ; 203: 431-446, 2022 07.
Article in English | MEDLINE | ID: covidwho-2096167

ABSTRACT

Infectious diseases are a global health problem affecting billions of people. Developing rapid and sensitive diagnostic tools is key for successful patient management and curbing disease spread. Currently available diagnostics are very specific and sensitive but time-consuming and require expensive laboratory settings and well-trained personnel; thus, they are not available in resource-limited areas, for the purposes of large-scale screenings and in case of outbreaks and epidemics. Developing new, rapid, and affordable point-of-care diagnostic assays is urgently needed. This review focuses on CRISPR-based technologies and their perspectives to become platforms for point-of-care nucleic acid detection methods and as deployable diagnostic platforms that could help to identify and curb outbreaks and emerging epidemics. We describe the mechanisms and function of different classes and types of CRISPR-Cas systems, including pros and cons for developing molecular diagnostic tests and applications of each type to detect a wide range of infectious agents. Many Cas proteins (Cas3, Cas9, Cas12, Cas13, Cas14 etc.) have been leveraged to create highly accurate and sensitive diagnostic tools combined with technologies of signal amplification and fluorescent, potentiometric, colorimetric, lateral flow assay detection and other. In particular, the most advanced platforms -- SHERLOCK/v2, DETECTR, CARMEN or CRISPR-Chip -- enable detection of attomolar amounts of pathogenic nucleic acids with specificity comparable to that of PCR but with minimal technical settings. Further developing CRISPR-based diagnostic tools promises to dramatically transform molecular diagnostics, making them easily affordable and accessible virtually anywhere in the world. The burden of socially significant diseases, frequent outbreaks, recent epidemics (MERS, SARS and the ongoing COVID-19) and outbreaks of zoonotic viruses (African Swine Fever Virus etc.) urgently need the developing and distribution of express-diagnostic tools. Recently devised CRISPR-technologies represent the unprecedented opportunity to reshape epidemiological surveillance and molecular diagnostics.


Subject(s)
African Swine Fever Virus , COVID-19 , Communicable Diseases , Animals , COVID-19/diagnosis , COVID-19/epidemiology , CRISPR-Cas Systems/genetics , Communicable Diseases/diagnosis , Communicable Diseases/genetics , Humans , Nucleic Acid Amplification Techniques/methods , Point-of-Care Systems , Swine
5.
Nanomedicine ; 47: 102624, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2095843

ABSTRACT

Respiratory viruses usually induced similar clinical symptoms at early infection. Herein, we presented a multichannel surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-based LFA) using high-performance magnetic SERS tags for the simultaneous ultrasensitive detection of respiratory viruses, namely influenza A virus (H1N1), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory syncytial virus (RSV) in biological samples. As-prepared magnetic SERS tags can directly enrich and capture target viruses without pretreatment of samples, avoiding the interference of impurities in the samples as well as improving the sensitivity. With the capture-detection method, the detection limits of the proposed assay reached 85 copies mL-1, 8 pg mL-1, and 8 pg mL-1 for H1N1, SARS-CoV-2 and RSV, respectively. Moreover, the detection properties of the proposed method for target viruses in throat swab samples were verified, suggesting its remarkable potential for the early and rapid differential diagnosis of respiratory viruses.

6.
Emerg Infect Dis ; 28(12)2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2089724

ABSTRACT

SARS-CoV-2 likely emerged from an animal reservoir. However, the frequency of and risk factors for interspecies transmission remain unclear. We conducted a community-based study in Idaho, USA, of pets in households that had >1 confirmed SARS-CoV-2 infections in humans. Among 119 dogs and 57 cats, clinical signs consistent with SARS-CoV-2 were reported for 20 dogs (21%) and 19 cats (39%). Of 81 dogs and 32 cats sampled, 40% of dogs and 43% of cats were seropositive, and 5% of dogs and 8% of cats were PCR positive. This discordance might be caused by delays in sampling. Respondents commonly reported close human‒animal contact and willingness to take measures to prevent transmission to their pets. Reported preventive measures showed a slightly protective but nonsignificant trend for both illness and seropositivity in pets. Sharing of beds and bowls had slight harmful effects, reaching statistical significance for sharing bowls and seropositivity.

7.
Emerg Infect Dis ; 28(11): 2270-2280, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2089723

ABSTRACT

Since the COVID-19 pandemic began, different SARS-CoV-2 variants have been identified and associated with higher transmissibility than the ancestral nonvariant strain. During January 1, 2021-January 15, 2022, we assessed differences in clinical and viral parameters in a convenience sample of COVID-19 outpatients and inpatients 0-21 years of age in Columbus, Ohio, USA, according to the infecting variant, identified using a mutation-specific reverse transcription PCR assay. Of the 676 patients in the study, 17.75% were infected with nonvariant strains, 18.49% with the Alpha variant, 41.72% with Delta, and 16.42% with Omicron. Rates of SARS-COV-2/viral co-infections were 15.66%-29.41% and were comparable across infecting variants. Inpatients with acute Delta and Omicron infections had lower SARS-CoV-2 cycle threshold values and more frequent fever and respiratory symptoms than those with nonvariant strain infections. In addition, SARS-COV-2/viral co-infections and the presence of underlying conditions were independently associated with worse clinical outcomes, irrespective of the infecting variant.


Subject(s)
COVID-19 , Coinfection , Child , Humans , Adolescent , SARS-CoV-2/genetics , Pandemics , Severity of Illness Index
8.
Emerg Infect Dis ; 28(11): 1-8, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2089722

ABSTRACT

During 2020-2021, countries in Latin America and the Caribbean reported clinical emergence of carbapenemase-producing Enterobacterales that had not been previously characterized locally, increased prevalence of carbapenemases that had previously been detected, and co-production of multiple carbapenemases in some isolates. These increases were likely fueled by changes related to the COVID-19 pandemic, including empirical antibiotic use for potential COVID-19-related bacterial infections and healthcare limitations resulting from the rapid rise in COVID-19 cases. Strengthening antimicrobial resistance surveillance, epidemiologic research, and infection prevention and control programs and antimicrobial stewardship in clinical settings can help prevent emergence and transmission of carbapenemase-producing Enterobacterales.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , Latin America/epidemiology , beta-Lactamases/genetics , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria
9.
Transfusion ; 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2088356

ABSTRACT

BACKGROUND: It is important to maintain the safety of blood products by avoiding the transfusion of units with known and novel viral pathogens. It is unknown whether COVID-19 convalescent plasma (CCP) may contain pathogenic viruses (either newly acquired or reactivated) that are not routinely screened for by blood centers. METHODS: The DNA virome was characterized in potential CCP donors (n = 30) using viral genome specific PCR primers to identify DNA plasma virome members of the Herpesviridae [Epstein Barr Virus (EBV), cytomegalovirus (CMV), human herpesvirus 6A/B, human herpesvirus 7] and Anelloviridae [Torque teno viruses (TTV), Torque teno mini viruses (TTMV), and Torque teno midi viruses (TTMDV)] families. In addition, the RNA plasma virome was characterized using unbiased metagenomic sequencing. Sequencing was done on a HiSeq2500 using high output mode with a read length of 2X100 bp. The sequencing reads were taxonomically classified using Kraken2. CMV and EBV seroprevalence were evaluated using a chemiluminescent immunoassay. RESULTS: TTV and TTMDV were detected in 12 (40%) and 4 (13%) of the 30 study participants, respectively; TTMDV was always associated with infection with TTV. We did not observe TTMV DNAemia. Despite CMV and EBV seroprevalences of 33.3% and 93.3%, respectively, we did not detect Herpesviridae DNA among the study participants. Metagenomic sequencing did not reveal any human RNA viruses in CCP, including no evidence of circulating SARS-CoV-2. DISCUSSION: There was no evidence of pathogenic viruses, whether newly acquired or reactivated, in CCP despite the presence of non-pathogenic Anelloviridae. These results confirm the growing safety data supporting CCP.

10.
J Paediatr Child Health ; 2022 Oct 25.
Article in English | MEDLINE | ID: covidwho-2088279

ABSTRACT

AIM: Inhaled nitrous oxide is a common form of procedural sedation in paediatric care. During the COVID-19 pandemic, concerns about potential aerosol generation and associated viral transmission to health-care workers have led to controversy regarding its use. We aimed to measure the degree of aerosol generation during continuous flow nitrous oxide sedation to inform future guidelines. METHODS: Aerosol numbers in the respirable range were measured using a particle counter during 30 procedures undertaken in children under nitrous oxide sedation in the Emergency Department. RESULTS: Changes from baseline measurements were greatest in particles in the 0.3 µm range. The mean increase from baseline in 0.3 µm particles per cubic metre was 18 022 (95% confidence interval (CI) 5949-30 096) after the child entered the room, and 2931 (95% CI -4407 to 10 269) during nitrous oxide administration. CONCLUSION: Variation of respirable particle numbers from baseline levels was no greater during nitrous oxide administration than for breathing and talking asymptomatic children. These results suggest the additional risk of airborne viral transmission to staff during inhaled nitrous oxide sedation is low.

11.
Eur J Clin Microbiol Infect Dis ; 41(12): 1445-1449, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2085399

ABSTRACT

With the COVID-19 pandemic still ongoing, the annual season of influenza and other respiratory virus epidemics has arrived. Specimens from patients suspected of respiratory viruses infection were collected. Viral detection was performed following RNA extraction and real-time RT-PCR. During the study period, we received and tested a total of 606 specimens. Rhinovirus virus was the viral type most prevalent, detected in 186 (45.47%) specimens. The age range of patients positive for influenza A, influenza A (H1N1), and influenza B was 18 days to 13 years. With female prevalence for this viral type, cough and asthma were the main clinical manifestations presented by this viral type. Our results indicate that rhinoviruses, adenoviruses, metapneumoviruses, and influenza are among the most important agents of ARI in pediatrics. The epidemic period of respiratory infections observed in Goiânia can be useful for planning and implementing some prevention strategies.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Respiratory Tract Infections , Viruses , Child , Humans , Female , Influenza, Human/epidemiology , Influenza A Virus, H1N1 Subtype/genetics , Prevalence , Pandemics , Viruses/genetics , Rhinovirus/genetics
12.
Elife ; 112022 10 18.
Article in English | MEDLINE | ID: covidwho-2080854

ABSTRACT

Background: The global distribution of COVID-19 vaccinations remains highly unequal. We examine public preferences in six European countries regarding the allocation of COVID-19 vaccines between the Global South and Global North. Methods: We conducted online discrete choice experiments with adult participants in France (n=766), Germany (n=1964), Italy (n=767), Poland (n=670), Spain (n=925), and Sweden (n=938). Respondents were asked to decide which one of two candidates should receive the vaccine first. The candidates varied on four attributes: age, mortality risk, employment, and living in a low- or high-income country. We analysed the relevance of each attribute in allocation decisions using conditional logit regressions. Results: In all six countries, respondents prioritised candidates with a high mortality and infection risk, irrespective of whether the candidate lived in the respondent's own country. All else equal, respondents in Italy, France, Spain, and Sweden gave priority to a candidate from a low-income country, whereas German respondents were significantly more likely to choose the candidate from their own country. Female, younger, and more educated respondents were more favourable to an equitable vaccine distribution. Conclusions: Given these preferences for global solidarity, European governments should promote vaccine transfers to poorer world regions. Funding: Funding was provided by the European Union's Horizon H2020 research and innovation programme under grant agreement 101016233 (PERISCOPE).


Subject(s)
COVID-19 , Vaccines , Adult , Female , Humans , COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , Europe/epidemiology
13.
Elife ; 112022 10 17.
Article in English | MEDLINE | ID: covidwho-2080853

ABSTRACT

Background: Epidemiological studies observed gender differences in COVID-19 outcomes, however, whether sex hormone plays a causal in COVID-19 risk remains unclear. This study aimed to examine associations of sex hormone, sex hormones-binding globulin (SHBG), insulin-like growth factor-1 (IGF-1), and COVID-19 risk. Methods: Two-sample Mendelian randomization (TSMR) study was performed to explore the causal associations between testosterone, estrogen, SHBG, IGF-1, and the risk of COVID-19 (susceptibility, hospitalization, and severity) using genome-wide association study (GWAS) summary level data from the COVID-19 Host Genetics Initiative (N=1,348,701). Random-effects inverse variance weighted (IVW) MR approach was used as the primary MR method and the weighted median, MR-Egger, and MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) test were conducted as sensitivity analyses. Results: Higher genetically predicted IGF-1 levels have nominally significant association with reduced risk of COVID-19 susceptibility and hospitalization. For one standard deviation increase in genetically predicted IGF-1 levels, the odds ratio was 0.77 (95% confidence interval [CI], 0.61-0.97, p=0.027) for COVID-19 susceptibility, 0.62 (95% CI: 0.25-0.51, p=0.018) for COVID-19 hospitalization, and 0.85 (95% CI: 0.52-1.38, p=0.513) for COVID-19 severity. There was no evidence that testosterone, estrogen, and SHBG are associated with the risk of COVID-19 susceptibility, hospitalization, and severity in either overall or sex-stratified TSMR analysis. Conclusions: Our study indicated that genetically predicted high IGF-1 levels were associated with decrease the risk of COVID-19 susceptibility and hospitalization, but these associations did not survive the Bonferroni correction of multiple testing. Further studies are needed to validate the findings and explore whether IGF-1 could be a potential intervention target to reduce COVID-19 risk. Funding: We acknowledge support from NSFC (LR22H260001), CRUK (C31250/A22804), SHLF (Hjärt-Lungfonden, 20210351), VR (Vetenskapsrådet, 2019-00977), and SCI (Cancerfonden).


Subject(s)
COVID-19 , Genome-Wide Association Study , COVID-19/epidemiology , COVID-19/genetics , Estrogens , Gonadal Steroid Hormones , Hospitalization , Humans , Insulin-Like Growth Factor I/genetics , Polymorphism, Single Nucleotide , Testosterone
14.
Elife ; 112022 10 14.
Article in English | MEDLINE | ID: covidwho-2080852

ABSTRACT

Background: The great majority of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infections are mild and uncomplicated, but some individuals with initially mild COVID-19 progressively develop more severe symptoms. Furthermore, there is substantial heterogeneity in SARS-CoV-2-specific memory immune responses following infection. There remains a critical need to identify host immune biomarkers predictive of clinical and immunological outcomes in SARS-CoV-2-infected patients. Methods: Leveraging longitudinal samples and data from a clinical trial (N=108) in SARS-CoV-2-infected outpatients, we used host proteomics and transcriptomics to characterize the trajectory of the immune response in COVID-19 patients. We characterized the association between early immune markers and subsequent disease progression, control of viral shedding, and SARS-CoV-2-specific T cell and antibody responses measured up to 7 months after enrollment. We further compared associations between early immune markers and subsequent T cell and antibody responses following natural infection with those following mRNA vaccination. We developed machine-learning models to predict patient outcomes and validated the predictive model using data from 54 individuals enrolled in an independent clinical trial. Results: We identify early immune signatures, including plasma RIG-I levels, early IFN signaling, and related cytokines (CXCL10, MCP1, MCP-2, and MCP-3) associated with subsequent disease progression, control of viral shedding, and the SARS-CoV-2-specific T cell and antibody response measured up to 7 months after enrollment. We found that several biomarkers for immunological outcomes are shared between individuals receiving BNT162b2 (Pfizer-BioNTech) vaccine and COVID-19 patients. Finally, we demonstrate that machine-learning models using 2-7 plasma protein markers measured early within the course of infection are able to accurately predict disease progression, T cell memory, and the antibody response post-infection in a second, independent dataset. Conclusions: Early immune signatures following infection can accurately predict clinical and immunological outcomes in outpatients with COVID-19 using validated machine-learning models. Funding: Support for the study was provided from National Institute of Health/National Institute of Allergy and Infectious Diseases (NIH/NIAID) (U01 AI150741-01S1 and T32-AI052073), the Stanford's Innovative Medicines Accelerator, National Institutes of Health/National Institute on Drug Abuse (NIH/NIDA) DP1DA046089, and anonymous donors to Stanford University. Peginterferon lambda provided by Eiger BioPharmaceuticals.


Subject(s)
COVID-19 , Humans , Antibodies, Viral , Biomarkers , BNT162 Vaccine , Cytokines/metabolism , Disease Progression , RNA, Messenger , SARS-CoV-2 , Clinical Trials as Topic
15.
Front Vet Sci ; 9: 956814, 2022.
Article in English | MEDLINE | ID: covidwho-2080311

ABSTRACT

Animal feed can easily be infected with molds during production and storage processes, and this can lead to the production of secondary metabolites, such as mycotoxins, which eventually threaten human and animal health. Furthermore, livestock production is also not free from viral infections. Under these conditions, the essential trace element, selenium (Se), can confer various biological benefits to humans and animals, especially due to its anticancer, antiviral, and antioxidant properties, as well as its ability to regulate immune responses. This article reviews the latest literature on the antagonistic effects of Se on mycotoxin toxicity and viral infections in animals. We outlined the systemic toxicity of mycotoxins and the primary mechanisms of mycotoxin-induced toxicity in this analysis. In addition, we pay close attention to how mycotoxins and viral infections in livestock interact. The use of Se supplementation against mycotoxin-induced toxicity and cattle viral infection was the topic of our final discussion. The coronavirus disease 2019 (COVID-19) pandemic, which is currently causing a health catastrophe, has altered our perspective on health concerns to one that is more holistic and increasingly embraces the One Health Concept, which acknowledges the interdependence of humans, animals, and the environment. In light of this, we have made an effort to present a thorough and wide-ranging background on the protective functions of selenium in successfully reducing mycotoxin toxicity and livestock viral infection. It concluded that mycotoxins could be systemically harmful and pose a severe risk to human and animal health. On the contrary, animal mycotoxins and viral illnesses have a close connection. Last but not least, these findings show that the interaction between Se status and host response to mycotoxins and cattle virus infection is crucial.

16.
BMC Infect Dis ; 22(1): 792, 2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2079396

ABSTRACT

BACKGROUND: SARS-CoV-2 infections have a wide spectrum of clinical manifestations whose causes are not completely understood. Some human conditions predispose to severe outcome, like old age or the presence of comorbidities, but many other facets, including coinfections with other viruses, remain poorly characterized. METHODS: In this study, the eukaryotic fraction of the respiratory virome of 120 COVID-19 patients was characterized through whole metagenomic sequencing. RESULTS: Genetic material from respiratory viruses was detected in 25% of all samples, whereas human viruses other than SARS-CoV-2 were found in 80% of them. Samples from hospitalized and deceased patients presented a higher prevalence of different viruses when compared to ambulatory individuals. Small circular DNA viruses from the Anneloviridae (Torque teno midi virus 8, TTV-like mini virus 19 and 26) and Cycloviridae families (Human associated cyclovirus 10), Human betaherpesvirus 6, were found to be significantly more abundant in samples from deceased and hospitalized patients compared to samples from ambulatory individuals. Similarly, Rotavirus A, Measles morbillivirus and Alphapapilomavirus 10 were significantly more prevalent in deceased patients compared to hospitalized and ambulatory individuals. CONCLUSIONS: Results show the suitability of using metagenomics to characterize a broader peripheric virological landscape of the eukaryotic virome in SARS-CoV-2 infected patients with distinct disease outcomes. Identified prevalent viruses in hospitalized and deceased patients may prove important for the targeted exploration of coinfections that may impact prognosis.


Subject(s)
COVID-19 , Coinfection , Viruses , Humans , SARS-CoV-2/genetics , Coinfection/epidemiology , Viruses/genetics , DNA, Circular , Severity of Illness Index
17.
J Microbiol ; 60(11): 1106-1112, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2075669

ABSTRACT

Due to the evolutionary arms race between hosts and viruses, viruses must adapt to host translation systems to rapidly synthesize viral proteins. Highly expressed genes in hosts have a codon bias related to tRNA abundance, the primary RNA translation rate determinant. We calculated the relative synonymous codon usage (RSCU) of three hepatitis viruses (HAV, HBV, and HCV), SARS-CoV-2, 30 human tissues, and hepatocellular carcinoma (HCC). After comparing RSCU between viruses and human tissues, we calculated the codon adaptation index (CAI) of viral and human genes. HBV and HCV showed the highest correlations with HCC and the normal liver, while SARS-CoV-2 had the strongest association with lungs. In addition, based on HCC RSCU, the CAI of HBV and HCV genes was the highest. HBV and HCV preferentially adapt to the tRNA pool in HCC, facilitating viral RNA translation. After an initial trigger, rapid HBV/HCV translation and replication may change normal liver cells into HCC cells. Our findings reveal a novel perspective on virus-mediated oncogenesis.


Subject(s)
COVID-19 , Carcinoma, Hepatocellular , Hepatitis B , Hepatitis C , Liver Neoplasms , Humans , Liver Neoplasms/complications , Liver Neoplasms/genetics , Hepatitis B virus/genetics , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/genetics , Hepatitis B/complications , Hepatitis B/genetics , Transcriptome , SARS-CoV-2 , Codon , Carcinogenesis , RNA, Transfer , Hepatitis C/genetics
18.
Advancements of Microbiology ; 61(3):125-132, 2022.
Article in English | Web of Science | ID: covidwho-2071037

ABSTRACT

Background The World Health Organizations (WHO) scientific brief on the coronavirus 2019 (COVID-19) pandemic and asthma from 2021, states individuals with asthma to be at a higher risk of respiratory infections as recorded in the annual influenza season. However, existing data from the COVID-19 pandemic does not till date establish an association of the disease with asthma. The disease burden of COVID-19 among asthmatic patients has not been very evident. This paucity of information forms the main rationale of our literature review, which is focused on collecting scattered literature around transmission, risks, as well as disease characteristics of COVID-19 among asthmatics world over including Saudi Arabia. Methodology This study report has been generated after detailed literature survey using keywords "asthma", "coronavirus", "COVID-19" and SARS-CoV-2 including quality high impact publications on relevant focus area through Google Scholar, Web of Science, and PubMed. Publication between year 2019 and 2021 were selected in specific to ensure the focus of the current literature review does not lose relevance in space of time. Results Our literature review identified elderly to have been reported to have high susceptibility to COVID-19;the risk being exacerbated among those with comorbidities. Further, no specific directives on asthma being one of the risk factors was found to be reported, especially with the current disease management strategy for COVID-19. The severely diseased COVID-19 patients also have been reported to exhibit increase in multiple cytokines, which may increase airway inflammation and exacerbate asthma attacks. However, contrary literature reports indicate an increase in T cells to reduce the disease impact of COVID-19. Conclusion There is paucity in significant evidence as of writing this review article to highlight exclusive negative impact of COVID-19 on asthmatics. Asthma patients however need to be recommended care pertaining to having their controller medication as new data continue to emerge on the clinic-pathological factors of the novel coronavirus.

19.
Ieee Access ; 10:98633-98648, 2022.
Article in English | Web of Science | ID: covidwho-2070264

ABSTRACT

COVID-19 caused by the transmission of SARS-CoV-2 virus taking a huge toll on global health and caused life-threatening medical complications and elevated mortality rates, especially among older adults and people with existing morbidity. Current evidence suggests that the virus spreads primarily through respiratory droplets emitted by infected persons when breathing, coughing, sneezing, or speaking. These droplets can reach another person through their mouth, nose, or eyes, resulting in infection. The "gold standard" for clinical diagnosis of SARS-CoV-2 is the laboratory-based nucleic acid amplification test, which includes the reverse transcription-polymerase chain reaction (RT-PCR) test on nasopharyngeal swab samples. The main concerns with this type of test are the relatively high cost, long processing time, and considerable false-positive or false-negative results. Alternative approaches have been suggested to detect the SARS-CoV-2 virus so that those infected and the people they have been in contact with can be quickly isolated to break the transmission chains and hopefully, control the pandemic. These alternative approaches include electrochemical biosensing and deep learning. In this review, we discuss the current state-of-the-art technology used in both fields for public health surveillance of SARS-CoV-2 and present a comparison of both methods in terms of cost, sampling, timing, accuracy, instrument complexity, global accessibility, feasibility, and adaptability to mutations. Finally, we discuss the issues and potential future research approaches for detecting the SARS-CoV-2 virus utilizing electrochemical biosensing and deep learning.

20.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 16.
Article in English | MEDLINE | ID: covidwho-2071683

ABSTRACT

The recent COVID-19 pandemic outbreak and arising complications during treatments have highlighted and demonstrated again the evolving ability of microorganisms, especially viral resistance to treatment as they develop into new and strong strains. The search for novel and effective treatments to counter the effects of ever-changing viruses is undergoing. Although it is an approved procedure for treating cancer, photodynamic therapy (PDT) was first used against bacteria and has now shown potential against viruses and certain induced diseases. PDT is a multi-stage process and uses photosensitizing molecules (PSs) that accumulate in diseased tissues and eradicates them after being light-activated in the presence of oxygen. In this review, studies describing viruses and their roles in disrupting cell regulation mechanisms and signaling pathways and facilitating tumorigenesis were described. With the development of innovative "or smart" PSs through the use of nanoparticles and two-photon excitation, among other strategies, PDT can boost immune responses, inactivate viral infections, and eradicate neoplastic cells. Visualization and monitoring of biological processes can be achieved in real-time with nanomedicines and better tissue penetration strategies. After photodynamic inactivation of viruses, signaling pathways seem to be restored but the underlying mechanisms are still to be elucidated. Light-mediated treatments are suitable to manage both oncogenic viral infections and induced neoplasia.

SELECTION OF CITATIONS
SEARCH DETAIL