Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
IOP Conference Series. Earth and Environmental Science ; 1114(1):012082, 2022.
Article in English | ProQuest Central | ID: covidwho-2160871

ABSTRACT

This study aim to improve the quality of Phyllanthus sp production by increasing the content of secondary metabolites as a bioactive compound. Phyllanthus sp contains various secondary metabolites that enhance immunity and treat diabetes, hypertension, antioxidants, anti-cancer, kidney disorders, and other illnesses. Since the Covid-19 pandemic, Phyllanthus sp widely used as a raw material for making herbal medicines. The trade value of Indonesian herbal medicines is estimated to increase in 2022, and the price will reach around the US $ 910 million, so it has very bright business prospects. These relatively limited phytopharmaceutical products constrain the supply of high-quality raw materials under the requirements of the herb medicine industry. Therefore, conducting a depth assessment related to efforts to improve the quality of Phyllanthus sp production by increasing the content of secondary metabolites is necessary. The efforts to enhance the quality of Phyllanthus sp as a source of herbal medicine raw materials can be made through plant breeding such as genetic mutations and in combination with the environmental arrangements of soil water content and solar radiation intensity. The efforts to increase the quality of herbal medicine raw materials are critical to support the development of the herbal medicine industry.

2.
IOP Conference Series. Earth and Environmental Science ; 1098(1):012016, 2022.
Article in English | ProQuest Central | ID: covidwho-2118176

ABSTRACT

The abundance of plastic waste in Indonesia has increased due to the contribution of disposable masks waste during the COVID-19 pandemic. The improper waste management causes the habit of dumping waste in the soil system to still frequently occur. The secondary microplastics from disposable mask waste has the potential to damage soil quality and soil capillary water. Therefore, this study was conducted with the aim of understanding the effects of disposable mask waste in peat soil. The research was conducted by setting up 3 reactors containing peat soil with disposable mask waste buried in it and some plants being grown on it. For 45 days, observations and samples were taken, both filtrate water and soil for analysis. The analysis results showed significant changes in soil properties with changes in the concentration of inorganic matter, organic matter, porosity, bulk density, and water content. Further research needs to be done to see the effects of disposable mask waste in the soil system in real conditions where several confounding variables cannot be controlled.

3.
Sustainability ; 14(17):10862, 2022.
Article in English | ProQuest Central | ID: covidwho-2024206

ABSTRACT

The waste generated by small-scale ultra-fresh juice producers, such as bistros and restaurants, has been little studied so far, mainly because it is unevenly distributed and dissipated in the economic ecosystem and would require high costs associated with transportation and subsequent recovery of bio composites. The present article seeks to offer solutions by providing sustainable methods to reduce their waste losses to a minimum and transform them into valuable products, with affordable equipment and techniques. The study focuses on the preliminary phase of quantitative analysis of fruit and vegetable by-products generated on a small scale, the results showing a mean 55% productivity in fresh juices. Due to the high amount of remnant water content in waste, a new process of mechanically pressing the resulting squeezed pulp was introduced, generating an additional yield in juice, ranging from 3.98 to 51.4%. Due to the rising trend in healthier lifestyle, the by-products were frozen or airdried for conservation in each of the processing stages, and the total phenolic compounds and antioxidant activity were analyzed in order to assess the traceability of these bioactive compounds to help maximize their transfer into future final products. The polyphenols transferred into by-products varied between 7 and 23% in pulps and between 6 and 20% in flours. The highest DPPH potential was found in flours, up to three-fold in comparison with the raw material, but the high dry substance content must be accounted for. The results highlight the potential of reusing the processing waste as a reliable source of bioactive compounds.

4.
Sustainability ; 14(15):9071, 2022.
Article in English | ProQuest Central | ID: covidwho-1994154

ABSTRACT

The effects of hesperidin and different casings on pH, moisture content, water-holding capacity, and total viable count (TVC) of sausages stored for 171 days were evaluated by principal component analysis (PCA) and discriminant analysis (DA). Sausages stuffed in a modified casing with treatment B (soy lecithin concentration: 1:30, soy oil concentration: 2.5%, lactic acid concentration: 21 mL/kg NaCl [solid], treated time: 90 min) had a significantly lower pH value (6.89 ± 0.01) at d 31 but higher (6.55 ± 0.03) than that of control casings at d 171 (p < 0.05). Hesperidin plays an important role in antimicrobial property that renders the sausages with modified casing by treatment A (soy lecithin concentration: 1:27.5, soy oil concentration: 1.25%, lactic acid concentration: 19.5 mL/kg NaCl [solid], treated time: 75 min) stable (p > 0.05), with the final TVC of 5.03 ± 0.10 log cfu/g. According to the PCA results, water-holding capacity has a positive correlation to pH. Moisture content was the best discriminator for differentiating sausages with control and modified casings, whilst pH was able to discriminate sausages stored after 138 days from other days.

5.
Clin Cosmet Investig Dermatol ; 15: 1283-1291, 2022.
Article in English | MEDLINE | ID: covidwho-1951744

ABSTRACT

Purpose: Improvement in water content and skin barrier function on human skin is believed to be induced by koji amazake, a non-alcoholic beverage derived from rice fermented by Aspergillus oryzae (A. oryzae). In order to scientifically identify the effects of koji amazake on human skin, we performed a randomized, double-blind, placebo-controlled, parallel-group comparative trial and quantified the content of glucosylceramide (GlcCer) which would be responsible for the effects. Participants and Methods: Healthy adults concerned with their skin dryness were divided into koji amazake (N = 30) or placebo group (N = 30). During this test, the test beverages were ingested at 118 g/day. Their water content and trans-epidermal water loss (TEWL) were measured at 0 week (baseline) and 8 weeks. The content of GlcCer in test beverages was quantified by HPLC-ELSD. Results: In comparison with the placebo group, the water content in the left cheek of individuals in the koji amazake group was maintained for 8 weeks. In addition, changes in water content from the baseline to 8 weeks differed significantly between the koji amazake (0.19) and placebo groups (-3.98). Unexpectedly, there was no significant difference in the TEWL between koji amazake and placebo group. We analyzed GlcCer in both koji amazake and placebo beverages, which were found to contain 1.35 ± 0.11 and 0.30 ± 0.07 mg/118 g, respectively. The amount of GlcCer in koji amazake was approximately equal to the dosage of plant-derived GlcCer which has the ability to improve water content and TEWL in humans. Conclusion: Present study has shown that intake of koji amazake contributes to maintain the water content only on the left cheek. The content of GlcCer derived from koji amazake was adequate for maintenance of the water content compared to previous reports. Therefore, it was concluded that GlcCer in koji amazake acts as a functional ingredient.

6.
International Journal of Agricultural and Biological Engineering ; 15(3):55-61, 2022.
Article in English | ProQuest Central | ID: covidwho-1934919

ABSTRACT

Food security is one of the key global challenges in this century. In Singapore, our research team has been using novel aeroponic technology to produce fresh vegetables since 1997. Aeroponic systems allow for year-round production of not only tropical, but also sub-tropical and temperate fresh vegetables, by simply cooling the roots suspended in aeroponic systems while the aerial parts grow under tropical ambient environments. It has also been used to investigate the impacts of root-zone CO2 on vegetables by enriching root-zone CO2 while their aerial portions were subjected to constant atmospheric CO2. To compensate for the lack of available land, Singapore also needs to develop a farming system that can increase productivity per unit land area by many-fold. Over the past 10 years, my research team has established a commercially viable LED integrated vertical aeroponic farming system to grow different leafy vegetables under different LED spectra, intensities, and durations in the tropical greenhouse. The results demonstrate that it is possible to increase shoot production and rate of shoot production of leafy vegetables by increasing light intensity and extending the photoperiod under effective LED lighting. Furthermore, temperate vegetable crops such as lettuce were able to acclimate to high light intensity under supplementary LED lights to natural sunlight in the greenhouse. Supplementary LED lightings promote both leaf initiation and expansion with increased photo synthetic pigments, higher Cyt b6f and Rubisco protein contents on a per area basis and thus improve photosynthetic capacity and enhance productivity. Plants sense and respond to changes in their immediate environments (microclimate), manipulating the root zone temperature (RZT) and water supply will impact not only their growth and development but also their nutritional quality. Our on-going research aims to investigate if the nutritional quality of leafy vegetables could be improved under suboptimal RZT and mild water deficit through deficit irrigation. If substantial energy and water savings in urban farming can be achieved without substantial yield penalty but with higher nutritional quality, the amount of water and energy saved can bring substantial benefits to society.

7.
Nephrology Dialysis Transplantation ; 37(SUPPL 3):i770-i771, 2022.
Article in English | EMBASE | ID: covidwho-1915812

ABSTRACT

BACKGROUND AND AIMS: The number of patients requiring home dialysis in Japan is increasing due to COVID-19 and the aging of the population. Home haemodialysis has been performed in Japan since the 1960s. However, as of March 2019, there were 720 home haemodialysis patients in Japan, which is only 0.2% of the total number of dialysis patients. The possible causes are as follows. The number of home haemodialysis patients has not increased markedly due to safety concerns as home haemodialysis patients perform dialysis at home, and the out-ofpocket costs are high. In addition, patients and caregivers must be able to manage themselves, and the burden on both patients and caregivers is heavy. Therefore, the Ministry of Health, Labour and Welfare (Japan) has advocated the need for home patients to share information with medical institutions to improve their quality of life, including COVID-19 measures. We have built a system to support home dialysis patients. Here, we have added an exercise therapy function to this system to encourage patients to continue exercising. METHOD: The items recorded/displayed in the patient's home peritoneal dialysis support system included records such as time, blood pressure, blood glucose level, urine volume, meal content, replacement start time, dialysate/plasma ratio, drainage volume, injection volume, water content and water removal and drainage. These inputs were entered via drop-down menus and displayed visually in graphs or by uploading images. The medical staff could see photographs of the affected areas and of meals entered by the patient. Patients could also share their opinions and treatment schedules with the medical staff at the medical institution. In addition, when exercising, the patients used an ergometer that allowed them to sit or lie down. The developed system incorporates records of the patient's exercises. Data were captured directly from the ergometer into the developed system in CSV format and could also be entered manually via drop-down menus. RESULTS: Using the developed system, we were able to enter and view patients' vital data and display photographs showing the color and volume of the drainage pack. By viewing these photographs, the medical staff could confirm the photographs of the affected areas, the color of the packs and the contents of the patients' meals. In addition, displaying the patient's vital records in a graph allowed for visual evaluation over time, which was useful when giving advice to patients. Using the two-way communication function, patients were also able to share their opinions and treatment schedules with the medical staff of the medical institution. Patients can now consult with medical staff, making their homes more like part of the hospital and giving them greater peace of mind. Figure 1 shows an example of the display of the developed system. Figure 2 shows an example of the patient's pedaling exercise results input from the ergometer. The amount of pedal movement performed by the patient was conserved through the dynamo and used to charge mobile devices. This allows the patient to charge their mobile devices while exercising, thus encouraging them to continue exercising. CONCLUSION: We have developed a support system for home haemodialysis patients that allows the input and display of patients' vital records and consultation with medical staff online. We have added a function to the system to encourage home haemodialysis patients to continue exercising. By using the developed system, patients can now perform home dialysis, including continuous exercise safely and with peace of mind, and healthcare professionals can access all medical information of patients, including changes over time. (Figure Presented).

8.
Applied Sciences ; 12(8):4001, 2022.
Article in English | ProQuest Central | ID: covidwho-1809671

ABSTRACT

Given recent worldwide environmental concerns, biodegradability, antibacterial activity, and healing properties around the wound area are vital features that should be taken into consideration while preparing biomedical materials such as wound dressings. Some of the available wound dressings present some major disadvantages. For example, low water vapor transmission rate (WVTR), inadequate exudates absorption, and the complex and high environmental cost of the disposal/recycling processes represent such drawbacks. In this paper, starch/polyvinyl alcohol (PVA) material with inserted nano-sized zinc-oxide particles (nZnO) (average size ≤ 100 nm) was made and altered using citric acid (CA). Both ensure an efficient antibacterial environment for wound-dressing materials. The film properties were assessed by UV–Vis spectrometry and were validated against the UV light transmission percentage of the starch/ polyvinyl alcohol (PVA)/ zinc-oxide nanoparticles (nZnO) composites. Analyses were conducted using X-ray Spectroscopy (EDX) and scanning electron microscopy (SEM) to investigate the structure and surface morphology of the materials. Moreover, to validate an ideal moisture content around the wound area, which is necessary for an optimum wound-healing process, the water vapor transmission rate of the film was measured. The new starch-based materials exhibited suitable physical and chemical properties, including solubility, gel fraction, fluid absorption, biodegradability, surface morphology (scanning electron microscopy imaging), and mechanical properties. Additionally, the pH level of the starch-based/nZnO film was measured to study the prospect of bacterial growth on this wound-dressing material. Furthermore, the in vitro antibacterial activity demonstrated that the dressings material effectively inhibited the growth and penetration of bacteria (Escherichia coli, Staphylococcus aureus).

9.
Atmospheric Chemistry and Physics ; 22(7):4355-4374, 2022.
Article in English | ProQuest Central | ID: covidwho-1776521

ABSTRACT

Nitrate aerosol plays an increasingly important role in wintertime haze pollution in China. Despite intensive research on wintertime nitrate chemistry in recent years, quantitative constraints on the formation mechanisms of nitrate aerosol in the Yangtze River Delta (YRD), one of the most developed and densely populated regions in eastern China, remain inadequate. In this study, we identify the major nitrate formation pathways and their key controlling factors during the winter haze pollution period in the eastern YRD using 2-year (2018–2019) field observations and detailed observation-constrained model simulations. We find that the high atmospheric oxidation capacity, coupled with high aerosol liquid water content (ALWC), made both the heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) and the gas-phase OH oxidation of nitrogen dioxide (NO2) important pathways for wintertime nitrate formation in this region, with contribution percentages of 69 % and 29 % in urban areas and 63 % and 35 % in suburban areas during the haze pollution episodes, respectively. We further find that the gas-to-particle partitioning of nitric acid (HNO3) was very efficient so that the rate-determining step in the overall formation process of nitrate aerosol was the oxidation of NOx to HNO3 through both heterogeneous and gas-phase processes. The atmospheric oxidation capacity (i.e., the availability of O3 and OH radicals) was the key factor controlling the production rate of HNO3 from both processes. During the COVID-19 lockdown (January–February 2020), the enhanced atmospheric oxidation capacity greatly promoted the oxidation of NOx to nitrate and hence weakened the response of nitrate aerosol to the emission reductions in urban areas. Our study sheds light on the detailed formation mechanisms of wintertime nitrate aerosol in the eastern YRD and highlights the demand for the synergetic regulation of atmospheric oxidation capacity and NOx emissions to mitigate wintertime nitrate and haze pollution in eastern China.

10.
IOP Conference Series. Earth and Environmental Science ; 980(1):012037, 2022.
Article in English | ProQuest Central | ID: covidwho-1730602

ABSTRACT

The fishing communities in Sungai Rasau village, South Kalimantan, Indonesia, have several joint business groups that mostly process their fish catch into salted fish products and shrimp paste for sale in the market. The fish drying technique still uses traditional methods that rely on sunny weather, this is not effective because the weather is difficult to predict due to climate change globally. This means that high rainfall affects fish drying production activities. If left unchecked, this certainly results in a decrease in the quantity and quality of salted fish production and affects their income and welfare. To maintain and improve the quality of raw materials for fisheries production, the solution is the use of appropriate technology, namely making salted fish processing equipment or dryers that are energy efficient and not influenced by weather factors such as rain. Using this tool can improve the quality and quantity of production. The form of activity methods carried out includes (1) coordination with related parties to foster local fishing groups;(2) identifying problems and determining solutions;(3) solar fish dryer design;(4) making efficient technology fish dryers that effectively and efficiently utilize solar energy. At the time of implementation of the dryer, the measurement of water content using TDS obtained results that the water content of mackerel has been reduced to about 10%

11.
Horticulturae ; 7(12):517, 2021.
Article in English | ProQuest Central | ID: covidwho-1598761

ABSTRACT

Effects of drought and aerosol stresses were studied in a factorial experiment based on a Randomized Complete Design with triplicates on two ornamental shrubs. Treatments consisted of four levels of water container (40%, 30%, 20%, and 10% of water volumetric content of the substrate) and, after 30 days from experiment onset, three aerosol treatments (distilled water and 50% and 100% salt sea water concentrations). The trial was contextually replicated on two species: Callistemon citrinus (Curtis) Skeels and Viburnum tinus L. ‘Lucidum’. In both species, increasing drought stress negatively affected dry biomass, leaf area, net photosynthesis, chlorophyll a fluorescence, and relative water content. The added saline aerosol stress induced a further physiological water deficit in plants of both species, with more emphasis on Callistemon. The interaction between the two stress conditions was found to be additive for almost all the physiological parameters, resulting in enhanced damage on plants under stress combination. Total biomass, for effect of combined stresses, ranged from 120.1 to 86.4 g plant−1 in Callistemon and from 122.3 to 94.6 g plant−1 in Viburnum. The net photosynthesis in Callistemon declined by the 70% after 30 days in WC 10% and by the 45% and 53% in WC 20% and WC 10% respectively after 60 days. In Viburnum plants, since the first measurement (7 days), a decrease of net photosynthesis was observed for the more stressed treatments (WC 20% and WC 10%), by 57%. The overall data suggested that Viburnum was more tolerant compared the Callistemon under the experimental conditions studied.

SELECTION OF CITATIONS
SEARCH DETAIL