Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 243
Filter
1.
Fresenius Environmental Bulletin ; 30(11A):12224-12229, 2021.
Article in English | GIM | ID: covidwho-2034538

ABSTRACT

To evaluate the safety and efficacy of albuvirtide (ABT) in the treatment of patients with Coronavirus Disease 2019 (COVID-19). The study was conducted in 22 patients with laboratory-confirmed COVID-19 infections in the Public Health Clinical Center of Chengdu from February to April, 2020. All patients intravenously received 320 mg of ABT on Day 1, 2, 3, 8 in addition to standard care. The primary endpoint was a coronavirus-negative result and the pneumonia was alleviated in patients. It showed that the average age of the patients was 48.2 +or- 18.0 years old, and 10 of them (45.5%) were male. The most common symptoms were cough (81.8%), expectoration (72.7%), fever (27.3%), while no abnormal blood cell count was observed among these patients. The CT examination showed that 6 patients (27.3%) with unilateral pneumonia and 15 of them (68.2%) with bilateral pneumonia, confirmed by massive patchy shadows and ground glass opacities within patient lungs. After the ABT treatment, the cough, expectoration and fever were relieved by 33.3%, 43.8% and 100%, respectively. The mean body temperature recovery time was 2.5 days (range, 1-4 days). The alleviated pneumonia was seen in 14 patients (63.6%) by CT scanning after day 8. Based on nasopharyngeal sampling, the COVID-19 RNA was negatively detected in 14 of 22 patients after 8 days of ABT treatment. Meanwhile, no obvious adverse events occurred during and after treatment. The results showed that ABT presents a favorable clinical response in patients infected with COVID19.

2.
Boletin de Malariologia y Salud Ambiental ; 61(Edicion Especial II 2021):16-25, 2021.
Article in Spanish | GIM | ID: covidwho-2033854

ABSTRACT

Introduction: The infection caused by SARS-COV-2 represents a major emergency in public health worldwide, morbid adults have an increased risk of severe infection and mortality. Metabolic and cardiovascular diseases have been managed with statins based on their anti-inflammatory, anti-oxidant and even antiviral effects.

3.
Journal of Basic and Clinical Pharmacy ; 11(3):1-1, 2020.
Article in English | CAB Abstracts | ID: covidwho-2012258

ABSTRACT

This study provides a simple, widely available deterrence medication to minimize COVID-19 infection using by tea and coffee infusions. By mixing white with an equal amount of water, add a small amount of tea/coffee infusion. Dull brownish albumen-tannin complex, a soft precipitate is formed and sinks to the bottom. The infusion should reach the furthest points in the respiratory tract so that a maximum number of viral particles are trapped. It is necessary to hold the infusion rolling about for a little while, 20 seconds in the mouth before swallowing. Gargling with the infusion is better. Tannins in tea or coffee infusions will form complexes with the 4-5 types of viral surface proteins [spikes], rendering them ineffective. Protein-tannin astringent complexation is a fundamental chemical reaction and is bound to act, unlike specific antimetabolites or enzyme-mediated actions of antibiotics. In fact, tannins react to some extent with the cell lining of the mucous membranes of the mouth and stomach. Tannins also chelate iron [Fe] and other metal ions required for many of the metabolic reactions of micro-organisms [viruses?], depriving them of these nutrients and further retarding their propagation. Two gargles per day, 12 hours apart, are recommended to disable the virus and eventually kill it. The procedure disables free viruses before tissue invasion. Therefore, the earlier the gargle commences, the better. Suspected contacts should preferably have three daily eight-hourly gargles. Astringent activity is an added activity of tea and coffee, demonstrated in this study [using E. coli and Salmonella] to that of immune boosting action generally spoken about.

4.
Lebensmittel & Biotechnologie ; 37(4):12-13, 2020.
Article in German | GIM | ID: covidwho-2010640

ABSTRACT

This article provides a brief description of how lipidomics demonstrates that hydroxychloroquine not only does not function against COVID-19, but it can also reduce the effectiveness of the immune system. In this scenario, biotechnologists believe that lipids are the virus's weak link. Fats may be to fault for a coronalvirus infection's adverse effects and after effects.

5.
Carbon Trends ; : 100208, 2022.
Article in English | ScienceDirect | ID: covidwho-2003909

ABSTRACT

In 2020, the World Health Organization (WHO) declared a pandemic due to the emergence of the coronavirus disease (COVID-19) which was resulted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Significant efforts have been devoted by many countries to develop more advanced medicines and vaccines. However, along with these developments, it is also extremely essential to design effective systems by incorporating smart materials to battle the COVID-19. Therefore, several approaches have been implemented to combat against COVID-19. Recently, due to its superior physicochemical properties along with other fascinating properties, graphene-based materials have been explored for the current COVID-19 and future pandemics. Therefore, in this review article, we discuss the recent progress and the most promising strategies related to graphene and related materials and its applications for detection, decontamination, diagnosis, and protection against COVID-19. In addition, the key challenges and future directives are discussed in detail for fundamental design and development of technologies based on graphene and its related materials and lastly, our personal opinions on the appropriate approaches to improve these technologies respectively.

7.
Progress in Organic Coatings ; 172:107135, 2022.
Article in English | ScienceDirect | ID: covidwho-1996491

ABSTRACT

Viruses such as SARS-CoV-2 can remain viable on solid surfaces for up to one week, hence fomites are a potential route of exposure to infectious virus. Copper has well documented antiviral properties that could limit this problem, however practical deployment of copper surfaces has been limited due to the associated costs and the incompatibility of copper metal in specific environments and conditions. We therefore developed an organic coating containing an intelligent-release Cu2+ pigment based on a cation exchange resin. Organic coatings containing a 50 % weight or higher loading of smart-release pigment were capable of completely inactivating (>6 log reduction in titre) SARS-CoV-2 within 4 h of incubation. Importantly these organic coatings demonstrated a significantly enhanced ability to inactivate SARS-CoV-2 compared to metallic copper and un-pigmented material. Furthermore, the presence of contaminating proteins inhibited the antiviral activity of metallic copper, but the intelligent-release Cu2+ pigment was unaffected. The approach of using a very basic paint system, based on a polymer binder embedded with “smart release” pigment containing an anti-viral agent which is liberated by ion-exchange, holds significant promise as a cost effective and rapidly deployed coating to confer virus inactivating capability to high touch surfaces.

8.
Chinese Veterinary Science / Zhongguo Shouyi Kexue ; 50(9):1112-1118, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-1994653

ABSTRACT

The effects of heat shock protein HSPQOABl on the replication of avian infectious bronchitis virus(AIBV) were confirmed by using over expression and RNA interference methods. The results showed that over expression of HSPQOABI inhibited AIBV replication, whereas knockdown of HSPQOABl in- creased AIBV replication. These results indicated that HSPQOABI is a potential anti-viral host factor. These findings provide the basis for further study of the pathogenic mechanism of AIBV and anti-coronavirus infection.

9.
Disease Surveillance ; 37(4):445-452, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-1994243

ABSTRACT

Immunobiotics, a group of probiotics, have the effect of anti-infection by regulating immune function, which can be added in in foods or used to make adjuvants or medicines (biologics). Immunobiotics can stimulate the mucosal immune system of the body, regulate innate and acquired immunity and exert non-specific anti-microbial (bacterial and viral) infection effects through oral, nasal mucosa, sublingual and other routes, but the immune regulation function of immunobiotics is species-specific. Oral administration of Lactobacillus plantarum GUANKE stimulated the increase and maintenance of SARS-CoV-2 neutralization antibodies in mice even 6 months after immunization. When L. plantarum GUANKE was given immediately after SARS-CoV-2 vaccination, the level of SARS-COV-2 specific neutralizing antibody in bronchoalveolar lavage increased by 8 times in mice, which improved the local and systematic cellular immune response to SARS-CoV-2 of mice. Clinical studies have found that immunobiotics have the auxiliary effect in the treatment of COVID-19 by mitigating the symptoms and increase the level of SARS-CoV-2 specific antibody of the patients. It is necessary to conduct research and evaluation for the appropriate guideline of immunobiotics use as erly as possible to provide a new option for the prevention and control of COVID-19.

10.
Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis ; 42(7):2047-2055, 2022.
Article in Chinese | Scopus | ID: covidwho-1988159

ABSTRACT

Since the outbreak of novel coronavirus pneumonia (COVID-19), many research institutes and enterprises at home and abroad have been accelerating the research of COVID-19 (SARS-CoV-2) antibody drugs. However, the research on effective drugs was limited by the drug polymorphisms. The environment of drug production, storage and use also affected the stability of the drug. As a fast, non-destructive testing method, infrared spectroscopy can reflect the differences in drug structure, crystal form and even manufacturing technique to the vibration spectrum, which greatly improves the efficiency of R&D (research and development). In this paper, three clinical trials were considered effective drugs for the treatment of COVID-19: Chloroquine diphosphate, Ribavirin and Abidol hydrochloride. Their far-infrared spectrum (1~10 THz) and mid-infrared spectrum (400~4 000 cm-1) were measured by Fourier transform infrared spectrometer (FTIR). In the far-infrared spectrum, the characteristic peaks of Ribavirin were around 2.01, 2.68, 3.37, 4.05, 4.83, 5.45, 5.92, 6.42 and 7.14 THz;the characteristic peaks of Chloroquine phosphate were near 1.26, 1.87, 2.37, 3.06, 3.78, 5.09 and 6.06 THz;the characteristic peaks of Abidol hydrochloride were located near 2.24, 3.14, 3.72, 4.25 and 5.38 THz. Based on density functional theory, the B3LYP hybrid functional and 6-311++G (d, p) basis sets were selected to analyze the vibrational modes corresponding to all characteristic peaks in the spectrum using Crystal14 and Gaussian 16 software, and the accurate identification of the vibration spectrum was realized. The vibrational modes originated from the molecules' collective vibration in the far infrared region. In the mid-infrared band, below 2 800 cm-1, the vibrational modes mainly came from the in-plane and out-of-plane bending and rocking of the group;Above 2 800 cm-1, the vibrational modes transited to the in-plane stretching of C-H, O-H and N-H bonds. Taking the crystal structure with periodic boundary conditions as the initial configuration of the theoretical calculation would make the calculated spectrum more consistent with the experimental one, especially in the far-infrared band and the low-frequency band of mid-infrared (400~1 000 cm-1). This study was of great significance to deeply understand the pharmaceutical characteristics, drug interactions, control of drug production process, and guide the storage and use of antiviral drugs such as Chloroquine phosphate, Ribavirin and Abidol hydrochloride. © 2022 Science Press. All rights reserved.

11.
Environ Sci Pollut Res Int ; 2022 Aug 06.
Article in English | MEDLINE | ID: covidwho-1982295

ABSTRACT

The 2019 outbreak of corona virus disease began from Wuhan (China), transforming into a leading pandemic, posing an immense threat to the global population. The WHO coined the term nCOVID-19 for the disease on 11th February, 2020 and the International Committee of Taxonomy of Viruses named it SARS-CoV-2, on account of its similarity with SARS-CoV-1 of 2003. The infection is associated with fever, cough, pneumonia, lung damage, and ARDS along with clinical implications of lung opacities. Brief understanding of the entry target of virus, i.e., ACE2 receptors has enabled numerous treatment options as discussed in this review. The manuscript provides a holistic picture of treatment options in COVID-19, such as non-specific anti-viral drugs, immunosuppressive agents, anti-inflammatory candidates, anti-HCV, nucleotide inhibitors, antibodies and anti-parasitic, RNA-dependent RNA polymerase inhibitors, anti-retroviral, vitamins and hormones, JAK inhibitors, and blood plasma therapy. The text targets to enlist the investigations conducted on all the above categories of drugs, with respect to the COVID-19 pandemic, to accelerate their significance in hindering the disease progression. The data collected primarily targets recently published articles and most recent records of clinical trials, focusing on the last 10-year database. The current review provides a comprehensive view on the critical need of finding a suitable treatment for the currently prevalent COVID-19 disease, and an opportunity for the researchers to investigate the varying possibilities to find and optimized treatment approach to mitigate and ameliorate the chaos created by the pandemic worldwide.

12.
Acta Pharmaceutica Sinica ; 57(4):917-930, 2022.
Article in Chinese | GIM | ID: covidwho-1975501

ABSTRACT

Histone deacetylases (HDACs) are a class of key enzymes that regulate epigenetics. There are 5 small-molecule HDACs inhibitors having been approved for anti-cancer therapy on the market. In recent years, there have been more and more studies on the antiviral aspects of HDACs inhibitors. This article classifies viruses into human immunodeficiency virus 1 (HIV-1), new coronavirus (SARS-CoV-2), Epstein-Barr virus (EBV) and other viruses, systematically summarizes the recent advances of antiviral effects of the HDACs inhibitors from the perspective of medicinal chemistry. This review aims to provide the researchers the convenience of accessing the latest advances of the antiviral effects of HDACs inhibitors, and to analyze the challenges and prospects of this field in future drug discovery.

13.
Mathematical Biosciences and Engineering ; 19(10):10078-10095, 2022.
Article in English | Scopus | ID: covidwho-1974984

ABSTRACT

In November 2019, there was the first case of COVID-19 (Coronavirus) recorded, and up to 3rd of April 2020, 1,116,643 confirmed positive cases, and around 59,158 dying were recorded. Novel antiviral structures of the SARS-COV-2 virus is discussed in terms of the metric basis of their molecular graph. These structures are named arbidol, chloroquine, hydroxy-chloroquine, thalidomide, and theaflavin. Partition dimension or partition metric basis is a concept in which the whole vertex set of a structure is uniquely identified by developing proper subsets of the entire vertex set and named as partition resolving set. By this concept of vertex-metric resolvability of COVID-19 antiviral drug structures are uniquely identified and helps to study the structural properties of structure. © 2022 American Institute of Mathematical Sciences. All rights reserved.

14.
Lancet Reg Health Southeast Asia ; 3: 100036, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1972241

ABSTRACT

Background: Additional outpatient therapies which are readily accessible will be essential to reduce COVID-19 illness progression in high risk individuals. Especially as the virus continues to mutate with greater transmissibility despite increased global vaccination. Methods: A randomized, double-blind, multicentre, parallel group, placebo-controlled phase III clinical trial evaluated the ability of nitric oxide (NO) to rapidly eradicate nasal SARS-CoV-2 RNA. Adults (18-70 years) with mild symptomatic COVID-19 were randomized, confirmed by laboratory SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) nasal swab. Randomisation was 1:1, NONS (N = 153) vs placebo (N = 153). NO generated by a nasal spray (NONS) was self-administered six times daily as two sprays per nostril (0⋅45 mL of solution/dose) for seven days. Patients at high risk of illness progression, defined as unvaccinated, ≥ 45 years of age or having comorbidities, were the primary analysis population. Findings: Overall, mean SARS-CoV-2 RNA concentrations (6·96 log10 copies/mL in the NONS group and 7·16 log10 copies/mL in the placebo group) were comparable at baseline. Primary endpoint mean treatment difference SARS-CoV-2 RNA change from baseline to the end of treatment (EOT) was -0·52 copies/mL (SE 0·202, 95% CI -0·92 to -0·12; p = 0·010) with NONS compared to placebo. Secondary endpoint assessments demonstrated a greater proportion of patients receiving NONS (82·8%) cleared SARS-CoV-2 (RT-PCR negative) by EOT compared to placebo (66·7%, p = 0·046), with no virus RNA detected a median of four days earlier compared to placebo (three vs seven days; p = 0·044). Interpretation: Use of NONS in patients recently infected with SARS-CoV-2 accelerates nasal virus clearance. Funding: Funding provided by Glenmark Pharmaceuticals Limited. Study medication provided by SaNOtize.

15.
Virol Sin ; 37(3): 418-426, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1967215

ABSTRACT

The global spread of enteroviruses (EVs) has become more frequent, severe and life-threatening. Intereron (IFN) I has been proved to control EVs by regulating IFN-stimulated genes (ISG) expression. 2'-5'-oligoadenylate synthetases 3 (OAS3) is an important ISG in the OAS/RNase L antiviral system. The relationship between OAS3 and EVs is still unclear. Here, we reveal that OAS3, superior to OAS1 and OAS2, significantly inhibited EV71 replication in vitro. However, EV71 utilized autologous 3C protease (3Cpro) to cleave intracellular OAS3 and enhance viral replication. Rupintrivir, a human rhinovirus 3C protease inhibitor, completely abolished the cleavage of EV71 3Cpro on OAS3. And the proteolytically deficient mutants H40G, E71A, and C147G of EV71 3Cpro also lost the ability of OAS3 cleavage. Mechanistically, the Q982-G983 motif in C-terminal of OAS3 was identified as a crucial 3Cpro cutting site. Further investigation indicated that OAS3 inhibited not only EV71 but also Coxsackievirus B3 (CVB3), Coxsackievirus A16 (CA16), Enterovirus D68 (EVD68), and Coxsackievirus A6 (CA6) subtypes. Notably, unlike other four subtypes, CA16 3Cpro could not cleave OAS3. Two key amino acids variation Ile36 and Val86 in CA16 3Cpro might result in weak and delayed virus replication of CA16 because of failure of OAS and 3AB cleavage. Our works elucidate the broad anti-EVs function of OAS3, and illuminate a novel mechanism by which EV71 use 3Cpro to escape the antiviral effect of OAS3. These findings can be an important entry point for developing novel therapeutic strategies for multiple EVs infection.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , Enterovirus , 2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , 2',5'-Oligoadenylate Synthetase/pharmacology , 3C Viral Proteases , Adenine Nucleotides , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Enterovirus/metabolism , Enterovirus A, Human/genetics , Humans , Ligases/pharmacology , Oligoribonucleotides , Peptide Hydrolases/pharmacology , Virus Replication
16.
Russ J Bioorg Chem ; : 1-13, 2022 Jul 28.
Article in English | MEDLINE | ID: covidwho-1965693

ABSTRACT

Glycyrrhizic acid and its primary metabolite glycyrrhetinic acid, are the main active ingredients in the licorice roots (glycyrrhiza species), which are widely used in several countries of the world, especially in east asian countries (China, Japan). These ingredients and their derivatives play an important role in treating many diseases, especially infectious diseases such as COVID-19 and hepatic infections. This review aims to summarize the different ways of synthesising the amide derivatives of glycyrrhizic acid and the main ways to synthesize the glycyrrhitinic acid derivatives. Also, to determine the main biological and pharmacological activity for these compounds from the previous studies to provide essential data to researchers for future studies. Supplementary Information: The online version contains supplementary material available at 10.1134/S1068162022050132.

17.
Front Cell Infect Microbiol ; 12: 850744, 2022.
Article in English | MEDLINE | ID: covidwho-1952256

ABSTRACT

The endemic and pandemic caused by respiratory virus infection are a major cause of mortality and morbidity globally. Thus, broadly effective antiviral drugs are needed to treat respiratory viral diseases. Small extracellular vesicles derived from human umbilical cord mesenchymal stem cells (U-exo) have recently gained attention as a cell-free therapeutic strategy due to their potential for safety and efficacy. Anti-viral activities of U-exo to countermeasure respiratory virus-associated diseases are currently unknown. Here, we tested the antiviral activities of U-exo following influenza A/B virus (IFV) and human seasonal coronavirus (HCoV) infections in vitro. Cells were subject to IFV or HCoV infection followed by U-exo treatment. U-exo treatment significantly reduced IFV or HCoV replication and combined treatment with recombinant human interferon-alpha protein (IFN-α) exerted synergistically enhanced antiviral effects against IFV or HCoV. Interestingly, microRNA (miR)-125b, which is one of the most abundantly expressed small RNAs in U-exo, was found to suppress IFV replication possibly via the induction of IFN-stimulated genes (ISGs). Furthermore, U-exo markedly enhanced RNA virus-triggered IFN signaling and ISGs production. Similarly, human nasal epithelial cells cultured at the air-liquid interface (ALI) studies broadly effective anti-viral and anti-inflammatory activities of U-exo against IFV and HCoV, suggesting the potential role of U-exo as a promising intervention for respiratory virus-associated diseases.


Subject(s)
Coronavirus , Exosomes , Extracellular Vesicles , Mesenchymal Stem Cells , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Humans , Mesenchymal Stem Cells/metabolism , Umbilical Cord
18.
Proc Natl Acad Sci India Sect B Biol Sci ; : 1-11, 2022 May 17.
Article in English | MEDLINE | ID: covidwho-1943498

ABSTRACT

The WHO has declared the Covid-19 outbreak as a global health emergency with a mortality rate of approximately 3%, across 200 countries. There has been a considerable risk involved with drug repurposing in Covid-19 treatment, particularly in patients with underlying chronic disorders. Intervention of appropriate adjunct to primary drug therapy at subclinical or clinical doses may help to reduce unintended consequences involved in Covid-19 therapy. Metal nanoparticles due to their intrinsic structural and functional properties, not only contribute to anti-viral properties but also help to reduce the risk for associated complications. Although, silver nanoparticles hold great promise as an effective biocidal agent, while other metal nanoparticles also fueled interest against virus infection. The present review discusses the important properties of selected metal nanoparticles, their antiviral principle with possible toxic consequences, provides invaluable information for scientists and clinicians about an appropriate metal nanoparticle as an adjunct for Covid-19 treatment.

19.
Struct Chem ; : 1-15, 2022 Jun 02.
Article in English | MEDLINE | ID: covidwho-1942564

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a major challenge affecting almost every corner of the world, with more than five million deaths worldwide. Despite several efforts, no drug or vaccine has shown the potential to check the ever-mutating SARS-COV-2. The emergence of novel variants is a major concern increasing the need for the discovery of novel therapeutics for the management of this pandemic. Out of several potential drug targets such as S protein, human ACE2, TMPRSS2 (transmembrane protease serine 2), 3CLpro, RdRp, and PLpro (papain-like protease), RNA-dependent RNA polymerase (RdRP) is a vital enzyme for viral RNA replication in the mammalian host cell and is one of the legitimate targets for the development of therapeutics against this disease. In this study, we have performed structure-based virtual screening to identify potential hit compounds against RdRp using molecular docking of a commercially available small molecule library of structurally diverse and drug-like molecules. Since non-optimal ADME properties create hurdles in the clinical development of drugs, we performed detailed in silico ADMET prediction to facilitate the selection of compounds for further studies. The results from the ADMET study indicated that most of the hit compounds had optimal properties. Moreover, to explore the conformational dynamics of protein-ligand interaction, we have performed an atomistic molecular dynamics simulation which indicated a stable interaction throughout the simulation period. We believe that the current findings may assist in the discovery of drug candidates against SARS-CoV-2.

20.
Phytother Res ; 2022 Jul 20.
Article in English | MEDLINE | ID: covidwho-1935725

ABSTRACT

Considering the outbreak pandemic of Coronavirus Disease 2019 (COVID-19), the lack of effective therapeutic strategies for the management of this viral disease, and the increasing evidence on the antiviral potential of silymarin, this study aimed to investigate the effectiveness of silymarin nanomicelles on the symptom's resolution time, laboratory parameters, and liver enzymes in patients with COVID-19. The participants were assigned to the nano-silymarin (n = 25) (receiving SinaLive soft gel, containing 70 mg silymarin as nanomicelles) or placebo groups (n = 25) three times daily for two weeks. Patients' symptoms and laboratory findings were assessed at baseline and during the follow-up period (one week and one month after the beginning of the treatment). No significant differences were observed between the two groups in terms of symptoms resolution time, laboratory parameters, and hospitalization duration (p > 0.05). However, the alanine aminotransferase level decreased significantly in the treatment group, compared to the placebo group (p < 0.001). Concomitant use of dexamethasone and remdesivir with silymarin might make the effects of silymarin on the improvement of patients' condition unclear. Further clinical trials are recommended with diverse dosages and larger sample sizes.

SELECTION OF CITATIONS
SEARCH DETAIL