Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Viral Immunol ; 35(9): 579-585, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2107328

ABSTRACT

Tumor necrosis factor superfamily 14 (TNFSF14) (LIGHT) is an interesting costimulatory molecule associated with T lymphocyte activation, and it mainly exerts its biological effects by binding to its receptors herpesvirus invasion mediator (HVEM) and lymphotoxin-ß receptor. Research shows that TNFSF14 plays a critical regulatory role in immune responses to viral infection, but its role is different in different diseases. TNFSF14 can be a cytokine neutralization target during novel coronavirus infection, and anti-TNFSF14 monoclonal antibody treatment can reduce the risk of respiratory failure and mortality. When the host is infected with adenovirus, TNFSF14 can be used as an inflammatory biomarker to indicate whether there was an adenovirus infection in the host and the degree of disease caused by viral infection. When hosts suffer influenza virus infection, the TNFSF14-HVEM signaling pathway can stimulate the maturation and proliferation of memory CD8+ T cells, which helps the host immune system stimulate a second immune response against respiratory virus infection. TNFSF14 can act as an immune adjuvant and enhance the immunogenicity of the human papillomavirus (HPV) DNA vaccine when the host is infected with HPV. During hepatitis virus infection, TNFSF14 acts as a proinflammatory factor, participates in inflammation and causes tissue damage. In conclusion, TNFSF14 plays different and significant roles in diverse viral infections. This article reviews the current research on TNFSF14 in antiviral immunity.


Subject(s)
COVID-19 , Papillomavirus Infections , Humans , Tumor Necrosis Factor Ligand Superfamily Member 14/genetics , Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism , CD8-Positive T-Lymphocytes/metabolism , Antiviral Agents , Signal Transduction , Tumor Necrosis Factor-alpha
2.
Elife ; 112022 10 12.
Article in English | MEDLINE | ID: covidwho-2067164

ABSTRACT

Viruses interact with the intracellular transport machinery to promote viral replication. Such host-virus interactions can drive host gene adaptation, leaving signatures of pathogen-driven evolution in host genomes. Here, we leverage these genetic signatures to identify the dynein activating adaptor, ninein-like (NINL), as a critical component in the antiviral innate immune response and as a target of viral antagonism. Unique among genes encoding components of active dynein complexes, NINL has evolved under recurrent positive (diversifying) selection, particularly in its carboxy-terminal cargo-binding region. Consistent with a role for NINL in host immunity, we demonstrate that NINL knockout cells exhibit an impaired response to interferon, resulting in increased permissiveness to viral replication. Moreover, we show that proteases encoded by diverse picornaviruses and coronaviruses cleave and disrupt NINL function in a host- and virus-specific manner. Our work reveals the importance of NINL in the antiviral response and the utility of using signatures of host-virus genetic conflicts to uncover new components of antiviral immunity and targets of viral antagonism.


Humans and viruses are locked in an evolutionary arms race. Viruses hijack cells, using their resources and proteins to build more viral particles; the cells fight back, calling in the immune system to fend off the attack. Both actors must constantly and quickly evolve to keep up with each other. This genetic conflict has been happening for millions of years, and the indelible marks it has left on genes can serve to uncover exactly how viruses interact with the organisms they invade. One hotspot in this host-virus conflict is the complex network of molecules that help to move cargo inside a cell. This system transports elements of the immune system, but viruses can also harness it to make more of themselves. Scientists still know very little about how viruses and the intracellular transport machinery interact, and how this impacts viral replication and the immune response. Stevens et al. therefore set out to identify new interactions between viruses and the transport system by using clues left in host genomes by evolution. They focused on dynein, a core component of this machinery which helps to haul molecular actors across a cell. To do so, dynein relies on adaptor molecules such as 'Ninein-like', or NINL for short. Closely examining the gene sequence for NINL across primates highlighted an evolutionary signature characteristic of host-virus genetic conflicts; this suggests that the protein may be used by viruses to reproduce, or by cells to fend off infection. And indeed, human cells lacking the NINL gene were less able to defend themselves, allowing viruses to grow much faster than normal. Further work showed that NINL was important for a major type of antiviral immune response. As a potential means to sabotage this defence mechanism, some viruses cleave NINL at specific sites and disrupt its role in intracellular transport. Better antiviral treatments are needed to help humanity resist old foes and new threats alike. The work by Stevens et al. demonstrates how the information contained in host genomes can be leveraged to understand what drives susceptibility to an infection, and to pinpoint molecular actors which could become therapeutic targets.


Subject(s)
Dyneins , Viruses , Antiviral Agents , Virus Replication , Immunity, Innate
3.
Viruses ; 14(8)2022 07 28.
Article in English | MEDLINE | ID: covidwho-2043972

ABSTRACT

Epitranscriptomics, i.e., chemical modifications of RNA molecules, has proven to be a new layer of modulation and regulation of protein expression, asking for the revisiting of some aspects of cellular biology. At the virological level, epitranscriptomics can thus directly impact the viral life cycle itself, acting on viral or cellular proteins promoting replication, or impacting the innate antiviral response of the host cell, the latter being the focus of the present review.


Subject(s)
Antiviral Agents , Virus Replication , Antiviral Agents/pharmacology , DEAD Box Protein 58/metabolism , Immunity, Innate/genetics , Signal Transduction/genetics , Virus Replication/genetics
4.
Trends Microbiol ; 30(8): 778-792, 2022 08.
Article in English | MEDLINE | ID: covidwho-1663909

ABSTRACT

The interferon (IFN) response is the major early innate immune response against invading viral pathogens and is even capable of mediating sterilizing antiviral immunity without the support of the adaptive immune system. Cumulative evidence suggests that the gut microbiota can modulate IFN responses, indirectly determining virological outcomes. This review outlines our current knowledge of the interactions between the gut microbiota and IFN responses and dissects the different mechanisms by which the gut microbiota may alter IFN expression to diverse viral infections. This knowledge offers a basis for translating experimental evidence from animal studies into the human context and identifies avenues for leveraging the gut microbiota-IFN-virus axis to improve control of viral infections and performance of viral vaccines.


Subject(s)
Microbiota , Virus Diseases , Animals , Antiviral Agents/therapeutic use , Humans , Immunity, Innate , Interferons/metabolism
5.
J Drug Target ; 30(8): 884-893, 2022 09.
Article in English | MEDLINE | ID: covidwho-2001024

ABSTRACT

Alpha-Galactosylceramide (α-GalCer) effectively activates the natural killer T (NKT) cells to secrete remarkable amounts of Th1 and Th2 cytokines and therefore, acts as a potential immunoadjuvant in vaccine formulation. In the present study, we prepared α-GalCer-bearing or α-GalCer-free liposomes and loaded them with Middle East Respiratory Syndrome Coronavirus papain-like protease (α-GalCer-Lip-MERS-CoV PLpro or Lip-MERS-CoV PLpro). These formulations were injected in mice to investigate the antigen-specific humoral and cell-mediated immune responses. The immunisation with α-GalCer-Lip-MERS-CoV PLpro or Lip-MERS-CoV PLpro did not induce any notable toxicity in immunised mice. The results demonstrated that mice immunised with α-GalCer-Lip-MERS-CoV PLpro showed greater antigen-specific antibody titre, switching of IgG isotyping to IgG2a subclass and higher lymphocyte proliferation. Moreover, the splenocytes from α-GalCer-Lip-MERS-CoV PLpro immunised mice secreted greater levels of IFN-γ, IL-4, IL-2 and IL-12. Interestingly, a booster dose induced stronger memory immune responses in mice previously immunised with α-GalCer-Lip-MERS-CoV PLpro. In summary, α-GalCer-Lip-MERS-CoV PLpro may prove to be a promising vaccine formulation to protect the individuals against MERS-CoV infection.


Subject(s)
Liposomes , Middle East Respiratory Syndrome Coronavirus , Animals , Galactosylceramides , Immunity , Mice
6.
SARS-CoV-2’nin Olası Nöroinvazyon Mekanizmaları. ; 10(2):69-76, 2022.
Article in English | Academic Search Complete | ID: covidwho-2002607

ABSTRACT

The severe acute respiratory syndrome coronavirus-2, a coronavirus, is known to cause acute respiratory distress syndrome and a range of non)respiratory effects, particularly in elderly male patients with underlying health conditions such overweight, diabetes, and hypertension. The coronavirus disease-2019 sequelae include multiple organ failure and neurological issues, and these prior health issues are linked to endothelial dysfunction. Although inhalation is the most frequent mode of infection, this virus has also been discovered in neurons, cerebrospinal fluid, the choroid plexus, and meningeal vasculature (English) [ FROM AUTHOR] Bir koronavirüs olan şiddetli akut solunum yolu sendromu koronavirüsü-2’nin, özellikle obezite, diyabet ve hipertansiyon gibi sağlık sorunları olan yaşlı erkek hastalarda akut solunum sıkıntısı sendromuna ve bir dizi solunum dışı sekellere neden olduğu bilinmektedir. Bu sağlık sorunları endotel disfonksiyonla bağlantılıdır ve koronavirüs hastalığı-2019 sekelleri, çoklu organ yetmezliği ve nörolojik sorunları içerir. Solunum birincil enfeksiyon modu olsa da, bu virüs koroid pleksus ve meningeal arterlerin yanı sıra nöronlar ve beyin omurilik sıvısı dahil olmak üzere çeşitli organlarda keşfedilmiştir (Turkish) [ FROM AUTHOR] Copyright of Turkish Journal of Immunology is the property of Galenos Yayinevi Tic. LTD. STI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

7.
J Virol ; 96(17): e0077422, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-1992940

ABSTRACT

XIAP-associated factor 1 (XAF1) is an interferon (IFN)-stimulated gene (ISG) that enhances IFN-induced apoptosis. However, it is unexplored whether XAF1 is essential for the host fighting against invaded viruses. Here, we find that XAF1 is significantly upregulated in the host cells infected with emerging RNA viruses, including influenza, Zika virus (ZIKV), and SARS-CoV-2. IFN regulatory factor 1 (IRF1), a key transcription factor in immune cells, determines the induction of XAF1 during antiviral immunity. Ectopic expression of XAF1 protects host cells against various RNA viruses independent of apoptosis. Knockout of XAF1 attenuates host antiviral innate immunity in vitro and in vivo, which leads to more severe lung injuries and higher mortality in the influenza infection mouse model. XAF1 stabilizes IRF1 protein by antagonizing the CHIP-mediated degradation of IRF1, thus inducing more antiviral IRF1 target genes, including DDX58, DDX60, MX1, and OAS2. Our study has described a protective role of XAF1 in the host antiviral innate immunity against RNA viruses. We have also elucidated the molecular mechanism that IRF1 and XAF1 form a positive feedback loop to induce rapid and robust antiviral immunity. IMPORTANCE Rapid and robust induction of antiviral genes is essential for the host to clear the invaded viruses. In addition to the IRF3/7-IFN-I-STAT1 signaling axis, the XAF1-IRF1 positive feedback loop synergistically or independently drives the transcription of antiviral genes. Moreover, XAF1 is a sensitive and reliable gene that positively correlates with the viral infection, suggesting that XAF1 is a potential diagnostic marker for viral infectious diseases. In addition to the antitumor role, our study has shown that XAF1 is essential for antiviral immunity. XAF1 is not only a proapoptotic ISG, but it also stabilizes the master transcription factor IRF1 to induce antiviral genes. IRF1 directly binds to the IRF-Es of its target gene promoters and drives their transcriptions, which suggests a unique role of the XAF1-IRF1 loop in antiviral innate immunity, particularly in the host defect of IFN-I signaling such as invertebrates.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Interferon Regulatory Factor-1 , RNA Virus Infections , RNA Viruses , Adaptor Proteins, Signal Transducing/immunology , Animals , Apoptosis Regulatory Proteins/immunology , Humans , Immunity, Innate , Interferon Regulatory Factor-1/immunology , Mice , Mice, Knockout , RNA Virus Infections/immunology , Virus Replication
8.
Front Microbiol ; 13: 876058, 2022.
Article in English | MEDLINE | ID: covidwho-1987517

ABSTRACT

Viral infections are a major cause of severe, fatal diseases worldwide. Recently, these infections have increased due to demanding contextual circumstances, such as environmental changes, increased migration of people and product distribution, rapid demographic changes, and outbreaks of novel viruses, including the COVID-19 outbreak. Internal variables that influence viral immunity have received attention along with these external causes to avert such novel viral outbreaks. The gastrointestinal microbiome (GIM), particularly the present probiotics, plays a vital role in the host immune system by mediating host protective immunity and acting as an immune regulator. Bacteriocins possess numerous health benefits and exhibit antagonistic activity against enteric pathogens and immunobiotics, thereby inhibiting viral infections. Moreover, disrupting the homeostasis of the GIM/host immune system negatively affects viral immunity. The interactions between bacteriocins and infectious viruses, particularly in COVID-19, through improved host immunity and physiology are complex and have not yet been studied, although several studies have proven that bacteriocins influence the outcomes of viral infections. However, the complex transmission to the affected sites and siRNA defense against nuclease digestion lead to challenging clinical trials. Additionally, bacteriocins are well known for their biofunctional properties and underlying mechanisms in the treatment of bacterial and fungal infections. However, few studies have shown the role of probiotics-derived bacteriocin against viral infections. Thus, based on the results of the previous studies, this review lays out a road map for future studies on bacteriocins for treating viral infections.

9.
Front Genet ; 13: 845474, 2022.
Article in English | MEDLINE | ID: covidwho-1793020

ABSTRACT

Background: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection causes coronavirus disease-2019 (COVID-19) in some individuals, while the majority remain asymptomatic. Natural killer (NK) cells play an essential role in antiviral defense. NK cell maturation and function are regulated mainly by highly polymorphic killer cell immunoglobulin-like receptors (KIR) and cognate HLA class I ligands. Herein, we tested our hypothesis that the individualized KIR and HLA class I ligand combinations that control NK cell function determine the outcome of SARS-CoV-2 infection. Methods: We characterized KIR and HLA genes in 200 patients hospitalized for COVID-19 and 195 healthy general population controls. Results: The KIR3DL1+HLA-Bw4+ [Odds ratio (OR) = 0.65, p = 0.03] and KIR3DL2+HLA-A3/11+ (OR = 0.6, p = 0.02) combinations were encountered at significantly lower frequency in COVID-19 patients than in the controls. Notably, 40% of the patients lacked both of these KIR+HLA+ combinations compared to 24.6% of the controls (OR = 2.04, p = 0.001). Additionally, activating receptors KIR2DS1+KIR2DS5+ are more frequent in patients with severe COVID-19 than patients with mild disease (OR = 1.8, p = 0.05). Individuals carrying KIR2DS1+KIR2DS5+ genes but missing either KIR3DL1+HLA-Bw4+ combination (OR = 1.73, p = 0.04) or KIR3DL2+HLA-A3/11+ combination (OR = 1.75, p = 0.02) or both KIR3DL1+HLA-Bw4+ and KIR2DL2+HLA-A3/11+ combinations (OR = 1.63, p = 0.03) were more frequent in the COVID-19 cohort compared to controls. Conclusions: The absence of KIR3DL1+HLA-Bw4+ and KIR3DL2+HLA-A3/11+ combinations presumably yields inadequate NK cell maturation and reduces anti-SARS-CoV-2 defense, causing COVID-19. An increased frequency of KIR2DS1+KIR2DS5+ in severe COVID-19 patients suggests vigorous NK cell response triggered via these activating receptors and subsequent production of exuberant inflammatory cytokines responsible for severe COVID-19. Our results demonstrate that specific KIR-HLA combinations that control NK cell maturation and function are underlying immunogenetic variables that determine the dual role of NK cells in mediating beneficial antiviral and detrimental pathologic action. These findings offer a framework for developing potential host genetic biomarkers to distinguish individuals prone to COVID-19.

10.
Nutrients ; 14(9)2022 Apr 20.
Article in English | MEDLINE | ID: covidwho-1792585

ABSTRACT

Since the beginning of the SARS-CoV-2 pandemic, there has been much discussion about the role of diet and antiviral immunity in the context of SARS-CoV-2 infection. Intake levels of vitamins D, C, B12, and iron have been demonstrated to be correlated with lower COVID-19 incidence and mortality. Obesity has been demonstrated to be an independent risk for the severity of COVID-19 infection in adults and also in children. This may be due to different mechanisms, mainly including the gut dysbiosis status observed in obese children. Moreover, the existence of a gut-lung axis added new knowledge to on the potential mechanisms by which diet and dietary substances may affect immune function. The aim of this narrative review is to address the intricate inter-relationship between COVID-19, immune function, and obesity-related inflammation and to describe the role of nutrients and dietary patterns in enhancing the immune system. Two ways to fight against COVID-19 disease exist: one with an antiviral response through immune system boosting and another with antioxidants with an anti-inflammatory effect. In the current pandemic situation, the intake of a varied and balanced diet, rich in micronutrients and bioactive compounds including fibers, should be recommended. However, clinical studies conducted on children affected by SARS-CoV-2 infection and comorbidity are warranted.


Subject(s)
COVID-19 , Pediatric Obesity , Adult , Antiviral Agents , Child , Humans , Pandemics , Pediatric Obesity/complications , SARS-CoV-2
11.
Biomedicines ; 10(3)2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1760350

ABSTRACT

The aim of this study was to identify single nucleotide variants in genes associated with susceptibility to or severe outcomes of COVID-19. A total of 319 genomic DNA samples from patients with varying degrees of disease severity and 78 control DNA samples from people who had regular or prolonged contact with patients with COVID-19 but did not have clinical manifestations and/or antibodies to SARS-CoV-2. Seven SNPs were identified that were statistically associated with disease risk or severe course, rs1799864 in the CCR2 gene (OR = 2.21), rs1990760 in the IFIH1 gene (OR = 2.41), rs1800629 in the TNF gene (OR = 1.98), rs75603675 in the TMPRSS2 gene (OR = 1.86), rs7842 in the C3AR1 gene (OR = 2.08), rs179008 in the gene TLR7 (OR = 1.85), rs324011 in the C3AR1 gene (OR = 2.08), rs179008 in the TLR7 gene (OR = 1.85), and rs324011 in the STAT6 gene (OR = 1.84), as well as two variants associated with protection from COVID-19, rs744166 in the STAT3 gene (OR = 0.36) and rs1898830 in the TLR2 gene (OR = 0.47). The genotype in the region of these markers can be the criterion of the therapeutic approach for patients with COVID-19.

12.
Vopr Pitan ; 91(1): 86-97, 2022.
Article in Russian | MEDLINE | ID: covidwho-1744381

ABSTRACT

The problem of increasing the population antiviral immunity is of particular importance during the third year of the SARS-CoV-2 pandemic. Concomitant intestinal dysbiosis is known to play an significant role in immune cell dysfunction. Therefore, it is very important to take measures to maintain the gut microbiota using the most affordable nutritional remedies, which include fermented milk and probiotic products designed for mass population consumption and capable of enhancing their immune defence when added to the daily diet. The aim of the study was to analyze scientific evidence highlighting the role of intestinal microbiota in maintaining the macro-organism immunological balance, and to evaluate modern fermented milk and probiotic products in terms of their effect on normalising the gut microbiota and their importance in the prevention and treatment of SARS-CoV-2. Material and methods. The presented scientific and analytical review analyzed the data of electronic resources of the Global Health platform, scientific libraries eLIBRARY.RU, Cochrane Library and CyberLeninka, the search system Google Academy¼, specialized sites for scientific publications ScienceDirect and Elsevier, bibliographic databases of articles on medical sciences MEDLINE, CDC infection diseases, Embase and PubMed- NCBI. The structural-logical, analytical and axiomatic methods were used. Results. It has been shown that normal intestinal microbiota takes part in maintaining metabolism in the digestive tract, increases the body's immune reactivity and regulates the functioning of all organs and systems. The severity of dysbiotic disorders can determine susceptibility to SARS-CoV-2, the severity of this infection course, as well as the level of post-infection and post-vaccination anti-COVID-19 immunity. The high prevalence of gut dysbacteriosis indicates the need to strengthen measures of correcting dysbiotic disorders, including the inclusion of fermented and probiotic products in the daily population diet. Conclusion. Fermented milk and probiotic products, as sources of easily digestible macronutrients, essential micronutrients, biologically active substances and beneficial live microorganisms, should be included in the daily diet during the SARS-CoV-2 pandemic to increase the adaptive capacity and immunity of the population.


Subject(s)
COVID-19 , Diet , Gastrointestinal Microbiome , Milk , Probiotics , Animals , COVID-19/immunology , COVID-19/prevention & control , Fermentation , Gastrointestinal Microbiome/immunology , Humans , Milk/microbiology , Pandemics , Probiotics/administration & dosage , SARS-CoV-2
13.
J Med Virol ; 94(7): 2977-2985, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1729157

ABSTRACT

The pandemic coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently the most formidable challenge to humankind. Understanding the complicated virus-host interplay is crucial for fighting against viral infection. A growing number of studies point to the critical roles of RING (really interesting new gene) finger (RNF) proteins during SARS-CoV-2 infection. RNF proteins exert direct antiviral activity by targeting genome and envelope glycoproteins of SARS-CoV-2. Additionally, some RNF members serve as potent regulators for antiviral innate immunity and antibody-dependent neutralization of SARS-CoV-2. Notably, SARS-CoV-2 also hijacks the RNF proteins-mediated ubiquitination process to evade host antiviral innate immunity and enhance viral replication. In this mini-review, we discuss the diverse antiviral mechanisms of RNF proteins and viral immune evasion in an RNF proteins-dependent manner. Understanding the crosstalk between RNF proteins and SARS-CoV-2 infection would help design potential novel targets for COVID-19 treatment.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Humans , Immunity, Innate , Pandemics
14.
Biomed Rep ; 16(4): 29, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1726128

ABSTRACT

The comparative analysis of the antiviral protective mechanisms, including protozoa and RNA interference in multicellular organisms, has revealed their similarity and provided a basic understanding of adaptive immunity. The present article summarizes the latest studies on RNA-guided gene regulation in human antiviral protection, and its importance. Additionally, the role of both neutralizing antibodies and the interferon system in viral invasion is considered. The interferon system is an additional mechanism for suppressing viral infections in humans, which shifts cells into an 'alarm' mode to attempt to prevent further contagion. The primary task of the human central immune system is to maintain integrity and to protect against foreign organisms. In this review, a novel concept is proposed: Antiviral protection in all organisms can be achieved through an intracellular RNA-guided mechanism. A simple and effective defence against viruses is incorporation of a part of a virus's DNA (spacer) into the hosts chromosomes. Following reinfection, RNA transcripts of this spacer are created to direct nuclease enzymes to destroy the viral genome. This is an example of real-time adaptive immunity potentially possessed by every cell with a full complement of chromosomes, and an indicator that antiviral immunity is not only mediated by the presence of neutralizing antibodies and memory B- and T-cells, but also by the presence of specific spacers in the DNA of individuals who have recovered from a viral infection.

15.
Mol Ther Nucleic Acids ; 27: 1225-1234, 2022 Mar 08.
Article in English | MEDLINE | ID: covidwho-1676870

ABSTRACT

The SARS-CoV-2 pandemic has underscored the need for rapidly usable prophylactic and antiviral treatments against emerging viruses. The targeted stimulation of antiviral innate immune receptors can trigger a broad antiviral response that also acts against new, unknown viruses. Here, we used the K18-hACE2 mouse model of COVID-19 to examine whether activation of the antiviral RNA receptor RIG-I protects mice from lethal SARS-CoV-2 infection and reduces disease severity. We found that prophylactic, systemic treatment of mice with the specific RIG-I ligand 3pRNA, but not type I interferon, 1-7 days before viral challenge, improved survival of mice by up to 50%. Survival was also improved with therapeutic 3pRNA treatment starting 1 day after viral challenge. This improved outcome was associated with lower viral load in oropharyngeal swabs and in the lungs and brains of 3pRNA-treated mice. Moreover, 3pRNA-treated mice exhibited reduced lung inflammation and developed a SARS-CoV-2-specific neutralizing antibody response. These results demonstrate that systemic RIG-I activation by therapeutic RNA oligonucleotide agonists is a promising strategy to convey effective, short-term antiviral protection against SARS-CoV-2 infection, and it has great potential as a broad-spectrum approach to constrain the spread of newly emerging viruses until virus-specific therapies and vaccines become available.

16.
Med (N Y) ; 3(2): 104-118.e4, 2022 Feb 11.
Article in English | MEDLINE | ID: covidwho-1628746

ABSTRACT

BACKGROUND: Protection offered by coronavirus disease 2019 (COVID-19) vaccines wanes over time, requiring an evaluation of different boosting strategies to revert such a trend and enhance the quantity and quality of Spike-specific humoral and cellular immune responses. These immunological parameters in homologous or heterologous vaccination boosts have thus far been studied for mRNA and ChAdOx1 nCoV-19 vaccines, but knowledge on individuals who received a single dose of Ad26.COV2.S is lacking. METHODS: We studied Spike-specific humoral and cellular immunity in Ad26.COV2.S-vaccinated individuals (n = 55) who were either primed with Ad26.COV2.S only (n = 13) or were boosted with a homologous (Ad26.COV2.S, n = 28) or heterologous (BNT162b2, n = 14) second dose. We compared our findings with the results found in individuals vaccinated with a single (n = 16) or double (n = 44) dose of BNT162b2. FINDINGS: We observed that a strategy of heterologous vaccination enhanced the quantity and breadth of both Spike-specific humoral and cellular immunity in Ad26.COV2.S-vaccinated individuals. In contrast, the impact of the homologous boost was quantitatively minimal in Ad26.COV2.S-vaccinated individuals, and Spike-specific antibodies and T cells were narrowly focused to the S1 region. CONCLUSIONS: Despite the small sample size of the study and the lack of well-defined correlates of protection against COVID-19, the immunological features detected support the utilization of a heterologous vaccine boost in individuals who received Ad26.COV2.S vaccination. FUNDING: This study is partially supported by the Singapore Ministry of Health's National Medical Research Council under its COVID-19 Research Fund (COVID19RF3-0060, COVID19RF-001, and COVID19RF-008), The Medical College St. Bartholomew's Hospital Trustees - Pump Priming Fund for SMD COVID-19 Research.


Subject(s)
Ad26COVS1 , COVID-19 , Antibodies, Neutralizing , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2
17.
Front Immunol ; 12: 735866, 2021.
Article in English | MEDLINE | ID: covidwho-1590052

ABSTRACT

Bats are the only mammals with self-powered flight and account for 20% of all extant mammalian diversity. In addition, they harbor many emerging and reemerging viruses, including multiple coronaviruses, several of which are highly pathogenic in other mammals, but cause no disease in bats. How this symbiotic relationship between bats and viruses exists is not yet fully understood. Existing evidence supports a specific role for the innate immune system, in particular type I interferon (IFN) responses, a major component of antiviral immunity. Previous studies in bats have shown that components of the IFN pathway are constitutively activated at the transcriptional level. In this study, we tested the hypothesis that the type I IFN response in bats is also constitutively activated at the protein level. For this, we utilized highly sensitive Single Molecule (Simoa) digital ELISA assays, previously developed for humans that we adapted to bat samples. We prospectively sampled four non-native chiroptera species from French zoos. We identified a constitutive expression of IFNα protein in the circulation of healthy bats, and concentrations that are physiologically active in humans. Expression levels differed according to the species examined, but were not associated with age, sex, or health status suggesting constitutive IFNα protein expression independent of disease. These results confirm a unique IFN response in bat species that may explain their ability to coexist with multiple viruses in the absence of pathology. These results may help to manage potential zoonotic viral reservoirs and potentially identify new anti-viral strategies.


Subject(s)
Chiroptera/blood , Immunity, Innate , Interferon-alpha/blood , Viruses/immunology , Animals , Cell Line , Chiroptera/genetics , Chiroptera/immunology , Chiroptera/virology , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation , Host-Pathogen Interactions , Interferon-alpha/genetics , Species Specificity , Symbiosis , Transcription, Genetic , Viruses/pathogenicity
18.
Front Cell Infect Microbiol ; 11: 766922, 2021.
Article in English | MEDLINE | ID: covidwho-1581381

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide and has infected more than 250 million people. A typical feature of COVID-19 is the lack of type I interferon (IFN-I)-mediated antiviral immunity in patients. However, the detailed molecular mechanisms by which SARS-CoV-2 evades the IFN-I-mediated antiviral response remain elusive. Here, we performed a comprehensive screening and identified a set of SARS-CoV-2 proteins that antagonize the IFN-I response. Subsequently, we characterized the mechanisms of two viral proteins antagonize IFN-I production and downstream signaling. SARS-CoV-2 membrane protein binds to importin karyopherin subunit alpha-6 (KPNA6) to inhibit interferon regulatory factor 3(IRF3) nuclear translocation. Further, the spike protein interacts with signal transducer and activator of transcription 1 (STAT1) to block its association with Janus kinase 1 (JAK1). This study increases our understanding of SARS-CoV-2 pathogenesis and suggests novel therapeutic targets for the treatment of COVID-19.


Subject(s)
COVID-19 , Interferon Type I , Spike Glycoprotein, Coronavirus , Viral Matrix Proteins , Humans , SARS-CoV-2 , Signal Transduction , Viral Proteins
19.
Nutrients ; 13(2)2021 Jan 23.
Article in English | MEDLINE | ID: covidwho-1575478

ABSTRACT

SARS-CoV-2 is a newly emerging virus that currently lacks curative treatments. Lactoferrin (LF) is a naturally occurring non-toxic glycoprotein with broad-spectrum antiviral, immunomodulatory and anti-inflammatory effects. In this study, we assessed the potential of LF in the prevention of SARS-CoV-2 infection in vitro. Antiviral immune response gene expression was analyzed by qRT-PCR in uninfected Caco-2 intestinal epithelial cells treated with LF. An infection assay for SARS-CoV-2 was performed in Caco-2 cells treated or not with LF. SARS-CoV-2 titer was determined by qRT-PCR, plaque assay and immunostaining. Inflammatory and anti-inflammatory cytokine production was determined by qRT-PCR. LF significantly induced the expression of IFNA1, IFNB1, TLR3, TLR7, IRF3, IRF7 and MAVS genes. Furthermore, LF partially inhibited SARS-CoV-2 infection and replication in Caco-2 intestinal epithelial cells. Our in vitro data support LF as an immune modulator of the antiviral immune response with moderate effects against SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 , Gene Expression Regulation , Immunity, Innate/drug effects , Lactoferrin/pharmacology , SARS-CoV-2/immunology , Animals , COVID-19/immunology , COVID-19/pathology , COVID-19/prevention & control , Caco-2 Cells , Chlorocebus aethiops , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Vero Cells
20.
Front Cell Dev Biol ; 9: 788410, 2021.
Article in English | MEDLINE | ID: covidwho-1572282

ABSTRACT

The interferon-stimulating gene 15 (ISG15) protein is a ubiquitin-like protein induced by interferons or pathogens. ISG15 can exist in free form or covalently bind to the target protein through an enzymatic cascade reaction, which is called ISGylation. ISGylation has been found to play an important role in the innate immune responses induced by type I interferon, and is, thus, critical for the defense of host cells against RNA, DNA, and retroviruses. Through covalent binding with the host and viral target proteins, ISG15 inhibits the release of viral particles, hinder viral replication, and regulates the incubation period of viruses, thereby exerting strong antiviral effects. The SARS-CoV-2 papain-like protease, a virus-encoded deubiquitinating enzyme, has demonstrated activity on both ubiquitin and ISG15 chain conjugations, thus playing a suppressive role against the host antiviral innate immune response. Here we review the recent research progress in understanding ISG15-type ubiquitin-like modifications, with an emphasis on the underlying molecular mechanisms. We provide comprehensive references for further studies on the role of ISG15 in antiviral immunity, which may enable development of new antiviral drugs.

SELECTION OF CITATIONS
SEARCH DETAIL