Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 462
Filter
1.
Acta Myol ; 41(2): 76-83, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-2101026

ABSTRACT

The recent approval of disease-modifying therapies for spinal muscular atrophy (SMA) raised the need of alternative outcome measures to evaluate treatment efficacy. In this study, we investigated the potential of muscle quantitative MRI (qMRI) as a biomarker of disease progression in adult SMA3 patients during nusinersen treatment. Six adult SMA3 patients (age ranging from 19 to 65 years) underwent 2-point Dixon muscle qMRI at beginning of nusinersen treatment (T0) and after 14 months (T14) to evaluate the muscle fat fraction (FF) at thigh and leg levels; patients were clinically assessed at T0 and T14 with the Hammersmith Functional Rating Scale Expanded (HFMSE), the Revised Upper Limb Module (RULM) and the 6-minute walk test (6MWT). At T0, vastus lateralis muscle displayed the highest mean FF (67.5%), while tibialis anterior was the most preserved one (mean FF = 35.2%). At T0, a slightly significant correlation of FF with HFMSE (p = 0.042) and disease duration (p = 0.042) at thigh level and only with HFMSE (p = 0.042) at leg level was found. At T14, no significant change of mean FF values at thigh and leg muscles was found compared to T0. Conversely, a statistically significant (p = 0.042) improvement of HFMSE was reported at T14. We observed no significant change of FF in thigh and leg muscles after 14 months of nusinersen therapy despite a significant clinical improvement of HFMSE. Further studies with longer follow-up and larger cohorts are needed to better investigate the role of qMRI as marker of disease progression in SMA patients.


Subject(s)
Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Adult , Aged , Disease Progression , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Middle Aged , Muscle, Skeletal/diagnostic imaging , Oligonucleotides , Spinal Muscular Atrophies of Childhood/drug therapy , Young Adult
2.
Journal of Clinical Lipidology ; JOUR
Article in English | ScienceDirect | ID: covidwho-2095541

ABSTRACT

Background 25-hydroxycholesterol (25HC), produced by cholesterol 25-hydroxylase (CH25H) in macrophages, has been reported to inhibit the replication of viral pathogens such as severe acute respiratory syndrome coronavirus-2. Also, CH25H expression in macrophages is robustly induced by interferons (IFNs). Objective To better understand the serum level increase of 25HC in coronavirus disease 2019 (COVID-19) and how it relates to the clinical picture. Methods We measured the serum levels of 25HC and five other oxysterols in 17 hospitalized COVID-19 patients. Results On admission, 25HC and 27-hydroxycholesterol (27HC) serum levels were elevated;however, 7-ketocholesterol (7KC) levels were lower in patients with COVID-19 than in the healthy controls. There was no significant correlation between 25HC serum levels and disease severity markers, such as interferon-gamma (IFN-γ) and interleukin 6. Dexamethasone effectively suppressed cholesterol 25-hydroxylase (CH25H) mRNA expression in RAW 264.7 cells, a murine leukemia macrophage cell line, with or without lipopolysaccharide or IFNs;therefore, it might mitigate the increasing effects of COVID-19 on the serum levels of 25HC. Conclusions Our results highlighted that 25HC could be used as a unique biomarker in severe COVID-19 and a potential therapeutic candidate for detecting the severity of COVID-19 and other infectious diseases.

3.
Open Forum Infect Dis ; 9(10): ofac526, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2097435

ABSTRACT

Efficient resource allocation is essential for effective pandemic response. We measured host biomarkers in 420 patients presenting with moderate coronavirus disease 2019 and found that different biomarkers predict distinct clinical outcomes. Interleukin (IL)-1ra, IL-6, IL-10, and IL-8 exhibit dose-response relationships with subsequent disease progression and could potentially be useful for multiple use-cases.

4.
Vasa ; 51(6): 341-350, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2096638

ABSTRACT

Vascular adhesion protein-1 (VAP-1) also known as amino oxidase copper containing 3 (AOC3) is a pro-inflammatory and versatile molecule with adhesive and enzymatic properties. VAP-1 is a primary amine oxidase belonging to the semicarbazide-sensitive amine oxidase (SSAO) family, which catalyzes the oxidation of primary amines leading to the production of ammonium, formaldehyde, methylglyoxal, and hydrogen peroxide. VAP-1 is mainly expressed by endothelial cells, smooth muscle cells, adipocytes and pericytes. It is involved in a repertoire of biological functions, e.g., immune cell extravasation, angiogenesis, and vascularization. Research into VAP-1 has intensified within the last decade on its role as a novel clinical biomarker and as a potential therapeutic target of vascular inflammatory disorders such as atherosclerosis, stroke, diabetes, neurovascular disorders (e.g., Alzheimer's Disease), hepatic disease (e.g., non-alcoholic steatohepatitis), and skin conditions (e.g., psoriasis). This is the most up-to-date and comprehensive review on VAP-1 focusing on the translational aspects of VAP-1. Compared to recent reviews, our review provides novel insights on VAP-1 and heart failure, stroke and frailty, diabetes, endometriosis, osteoarthritis, COVID-19, conjunctivitis associated systemic lupus erythematosus, hematopoietic stem cells, gliomas, treatment of colorectal cancer with a novel VAP-1 inhibitor (U-V269), promoting recovery of motor functions and habit learning with a novel VAP-1 inhibitor (PXS-4681A), and 68Ga-DOTA-Siglec-9, a labelled peptide of Siglec-9 (a VAP-1 ligand), which appears to be a safe PET tracer for inflammation in rheumatoid arthritis. Finally, we present the emerging role of VAP-1 in pregnancy as a gatekeeper of immune cells, which are critical for spiral arterial remodeling, the deficiency of which could lead to vascular disorders of pregnancy such as preeclampsia. Future research should prioritize clinical trials on VAP-1 small-molecule inhibitors and monoclonal antibodies, thus, maximizing the potential of VAP-1 targeted therapy as well as research into sVAP-1 as a clinical biomarker of diseases and its prognosis.


Subject(s)
Amine Oxidase (Copper-Containing) , Atherosclerosis , COVID-19 , Diabetes Mellitus , Stroke , Female , Humans , Endothelial Cells , Cell Adhesion Molecules/therapeutic use , Amine Oxidase (Copper-Containing)/therapeutic use , Vascular Cell Adhesion Molecule-1 , Biomarkers , Sialic Acid Binding Immunoglobulin-like Lectins/therapeutic use
5.
EJIFCC ; 33(2): 75-78, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2092798
6.
Front Med (Lausanne) ; 9: 972040, 2022.
Article in English | MEDLINE | ID: covidwho-2089858

ABSTRACT

Sepsis is a clinical syndrome characterized by a dysregulated response to infection. It represents a leading cause of mortality in ICU patients worldwide. Although sepsis is in the point of interest of research for several decades, its clinical management and patient survival are improving slowly. Monitoring of the biomarkers and their combinations could help in early diagnosis, estimation of prognosis and patient's stratification and response to the treatment. Circulating soluble endoglin (sEng) is the cleaved extracellular part of transmembrane glycoprotein endoglin. As a biomarker, sEng has been tested in several pathologic conditions where its elevation was associated with endothelial dysfunction. In this study we have tested the ability of sEng to predict mortality and its correlation with other clinical characteristics in the cohort of septic shock patients (n = 37) and patients with severe COVID-19 (n = 40). In patients with COVID-19 sEng did not predict mortality or correlate with markers of organ dysfunction. In contrast, in septic shock the level of sEng was significantly higher in patients with early mortality (p = 0.019; AUC = 0.801). Moreover, sEng levels correlated with signs of circulatory failure (required dose of noradrenalin and lactate levels; p = 0.002 and 0.016, respectively). The predominant clinical problem in patients with COVID-19 was ARDS, and although they often showed signs of other organ dysfunction, circulatory failure was exceptional. This potentially explains the difference between sEng levels in COVID-19 and septic shock. In conclusion, we have confirmed that sEng may reflect the extent of the circulatory failure in septic shock patients and thus could be potentially used for the early identification of patients with the highest degree of endothelial dysfunction who would benefit from endothelium-targeted individualized therapy.

7.
Curr Pharm Biotechnol ; 2022 Oct 25.
Article in English | MEDLINE | ID: covidwho-2089596

ABSTRACT

BACKGROUND: Small, non-coding microRNAs, usually of 20-25 nucleotides, are known to regulate the post-transcriptional gene expression, which has a significant role in human biological processes, including immune-biogenesis, homeostasis and infection control as differential expression of such miRNAs is responsible for fine-tuning the organismic development. METHODS: A search of bibliographic databases was carried out with a focused question on microRNA-Disease Prediction. A deductive qualitative content analysis approach was further employed to assess the research's overall outcomes, review articles on prediction tools in miRNA-Diseases, and analyse the interventions. RESULTS: Diagnosis and therapeutics of diseases and miRNA prediction methods hold importance in identifying the regulatory mechanisms. Collections of efficient miRNA prediction methods to identify miRNA-mRNA-disease regulatory relationships have been presented through this review, consolidating the potential of miRNAs as a diagnostic and prognostic biomarker of multiple diseases, including COVID-19. CONCLUSIONS: The role of miRNA in the aetiology and pathogenesis of wide-range of pathologies, including viral, bacterial to chronic diseases such as cancer, is quite feasible through the modern tools in bioinformatics which has been elaborated focusing upon miRNA-disease prediction methods and their application potential establishing miRNAs as a robust and reliable biomarker in clinico-medical studies.

8.
Biochim Biophys Acta Mol Basis Dis ; 1869(1): 166584, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2082535

ABSTRACT

Since the outbreak of coronavirus disease 2019 (COVID-19), biomarkers for evaluating severity, as well as supportive care to improve clinical course, remain insufficient. We explored the potential of d-amino acids, rare enantiomers of amino acids, as biomarkers for assessing disease severity and as protective nutrients against severe viral infections. In mice infected with influenza A virus (IAV) and in patients with severe COVID-19 requiring artificial ventilation or extracorporeal membrane oxygenation, blood levels of d-amino acids, including d-alanine, were reduced significantly compared with those of uninfected mice or healthy controls. In mice models of IAV infection or COVID-19, supplementation with d-alanine alleviated severity of clinical course, and mice with sustained blood levels of d-alanine showed favorable prognoses. In severe viral infections, blood levels of d-amino acids, including d-alanine, decrease, and supplementation with d-alanine improves prognosis. d-Alanine has great potentials as a biomarker and a therapeutic option for severe viral infections.

9.
Int J Mol Sci ; 23(20)2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2082320

ABSTRACT

Recent research has contributed significantly to our understanding of the pathogenesis of acute disseminated intravascular coagulation. COVID-19 can be considered as a new underlying condition of disseminated intravascular coagulation. In this narrative review, current evidence is presented regarding biomarker differences between sepsis-induced and COVID-19-associated coagulopathies, supporting the importance of acquired antithrombin deficiency in the early differential diagnosis of septic coagulopathy and its potential impact on treatment with endogenous anticoagulants. Establishing new scoring systems for septic coagulopathy in combination with endogenous anticoagulant biomarker activities may allow for the identification of those in the heterogeneous population of sepsis patients who are more likely to benefit from targeted specific treatment interventions.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Disseminated Intravascular Coagulation , Sepsis , Humans , Disseminated Intravascular Coagulation/drug therapy , Disseminated Intravascular Coagulation/etiology , Antithrombins/therapeutic use , COVID-19/complications , Anticoagulants/therapeutic use , Anticoagulants/pharmacology , Blood Coagulation Disorders/complications , Sepsis/complications , Antithrombin III , Biomarkers
10.
Inflamm Res ; 71(12): 1417-1432, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2074066

ABSTRACT

Acute respiratory distress syndrome (ARDS) is an acute and diffuse inflammatory lung injury in a short time, one of the common severe manifestations of the respiratory system that endangers human life and health. As an innate immune cell, macrophages play a key role in the inflammatory response. For a long time, the role of pulmonary macrophages in ARDS has tended to revolve around the polarization of M1/M2. However, with the development of single-cell RNA sequencing, fate mapping, metabolomics, and other new technologies, a deeper understanding of the development process, classification, and function of macrophages in the lung are acquired. Here, we discuss the function of pulmonary macrophages in ARDS from the two dimensions of anatomical location and cell origin and describe the effects of cell metabolism and intercellular interaction on the function of macrophages. Besides, we explore the treatments for targeting macrophages, such as enhancing macrophage phagocytosis, regulating macrophage recruitment, and macrophage death. Considering the differences in responsiveness of different research groups to these treatments and the tremendous dynamic changes in the gene expression of monocyte/macrophage, we discussed the possibility of characterizing the gene expression of monocyte/macrophage as the biomarkers. We hope that this review will provide new insight into pulmonary macrophage function and therapeutic targets of ARDS.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Humans , Macrophages, Alveolar/metabolism , Macrophages , Lung/metabolism
11.
Bratisl Lek Listy ; 123(11): 846-852, 2022.
Article in English | MEDLINE | ID: covidwho-2080685

ABSTRACT

BACKGROUND: Abnormal neutrophil extracellular traps are associated with lung diseases, thrombosis, increased mucosal secretion in the airways. The aim of this study is to evaluate the possible place of the most specific NETosis marker Cit-H3 protein in diagnostic algorithms by revealing its relationship with the severity, mortality and prognosis of SARS-CoV-2 pneumonia. PATIENTS AND METHODS: Patients (n = 78) who applied to the Emergency Department between March 11, 2020 and June 10, 2020, with positive SARS-CoV-2 polymerase chain reaction (PCR) test and lung involvement were included in the prospective study. Serum Cit-H3 levels and critical laboratory parameters were measured at baseline on the day of clinical deterioration and before recovery/discharge/death. Cit-C3 levels were determined by enzyme immunassay method. RESULTS: Cit-H3 levels in patients with SARS-CoV-2 pneumonia during their first admission to the hospital were significantly higher compared to the healthy control group (p < 0.05). Repeated measurements of Cit-H3 levels of the patients significantly correlated with D-dimer, procalcitonin, Neutrophil/ Lymphocyte ratio, lymphocyte, CRP, and oxygen saturation. Cit-H3 levels of the patients who died were significantly higher than that of those who survived (p < 0.05). Cit-H3 levels were found to be statistically significantly higher in patients who developed acute respiratory distress syndrome, were admitted to the intensive care unit, and had mortality (p < 0.05). CONCLUSIONS: Cit-H3 plays a role in inflammatory processes in SARS-CoV-2 pneumonia, and changes in serum Cit-H3 levels of these patients can be used to determine prognosis and mortality (Tab. 5, Fig. 1, Ref. 21).


Subject(s)
COVID-19 , Extracellular Traps , Humans , Procalcitonin , Prospective Studies , SARS-CoV-2
12.
JMIR Med Inform ; 10(11): e35622, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2079964

ABSTRACT

BACKGROUND: The COVID-19 disease has multiple symptoms, with anosmia and ageusia being the most prevalent, varying from 75% to 95% and from 50% to 80% of infected patients, respectively. An automatic assessment tool for these symptoms will help monitor the disease in a fast and noninvasive manner. OBJECTIVE: We hypothesized that people with COVID-19 experiencing anosmia and ageusia had different voice features than those without such symptoms. Our objective was to develop an artificial intelligence pipeline to identify and internally validate a vocal biomarker of these symptoms for remotely monitoring them. METHODS: This study used population-based data. Participants were assessed daily through a web-based questionnaire and asked to register 2 different types of voice recordings. They were adults (aged >18 years) who were confirmed by a polymerase chain reaction test to be positive for COVID-19 in Luxembourg and met the inclusion criteria. Statistical methods such as recursive feature elimination for dimensionality reduction, multiple statistical learning methods, and hypothesis tests were used throughout this study. The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) Prediction Model Development checklist was used to structure the research. RESULTS: This study included 259 participants. Younger (aged <35 years) and female participants showed higher rates of ageusia and anosmia. Participants were aged 41 (SD 13) years on average, and the data set was balanced for sex (female: 134/259, 51.7%; male: 125/259, 48.3%). The analyzed symptom was present in 94 (36.3%) out of 259 participants and in 450 (27.5%) out of 1636 audio recordings. In all, 2 machine learning models were built, one for Android and one for iOS devices, and both had high accuracy-88% for Android and 85% for iOS. The final biomarker was then calculated using these models and internally validated. CONCLUSIONS: This study demonstrates that people with COVID-19 who have anosmia and ageusia have different voice features from those without these symptoms. Upon further validation, these vocal biomarkers could be nested in digital devices to improve symptom assessment in clinical practice and enhance the telemonitoring of COVID-19-related symptoms. TRIAL REGISTRATION: Clinicaltrials.gov NCT04380987; https://clinicaltrials.gov/ct2/show/NCT04380987.

13.
Biomedicines ; 10(10)2022 Oct 12.
Article in English | MEDLINE | ID: covidwho-2071216

ABSTRACT

Although there is strong evidence that SARS-CoV-2 infection is associated with adverse outcomes in certain ethnic groups, the association of disease severity and risk factors such as comorbidities and biomarkers with racial disparities remains undefined. This retrospective study between March 2020 and February 2021 explores COVID-19 risk factors as predictors for patients' disease progression through country comparison. Disease severity predictors in Germany and Japan were cardiovascular-associated comorbidities, dementia, and age. We adjusted age, sex, body mass index, and history of cardiovascular disease comorbidity in the country cohorts using a propensity score matching (PSM) technique to reduce the influence of differences in sample size and the surprisingly young, lean Japanese cohort. Analysis of the 170 PSM pairs confirmed that 65.29% of German and 85.29% of Japanese patients were in the uncomplicated phase. More German than Japanese patients were admitted in the complicated and critical phase. Ethnic differences were identified in patients without cardiovascular comorbidities. Japanese patients in the uncomplicated phase presented a suppressed inflammatory response and coagulopathy with hypocoagulation. In contrast, German patients exhibited a hyperactive inflammatory response and coagulopathy with hypercoagulation. These differences were less pronounced in patients in the complicated phase or with cardiovascular diseases. Coagulation/fibrinolysis-associated biomarkers rather than inflammatory-related biomarkers predicted disease severity in patients with cardiovascular comorbidities: platelet counts were associated with severe illness in German patients. In contrast, high D-dimer and fibrinogen levels predicted disease severity in Japanese patients. Our comparative study indicates that ethnicity influences COVID-19-associated biomarker expression linked to the inflammatory and coagulation (thrombo-inflammatory) response. Future studies will be necessary to determine whether these differences contributed to the less severe disease progression observed in Japanese COVID-19 patients compared with those in Germany.

14.
Biomedicines ; 10(10)2022 Oct 11.
Article in English | MEDLINE | ID: covidwho-2071215

ABSTRACT

The interaction between programmed death-1 receptor PD-1 and its ligands PD-L1 and PD-L2 is involved in self-tolerance, immune escape of cancer, cardiovascular diseases, and COVID-19. As blood-based protein markers they bear great potential to improve oncoimmunology research and monitoring of anti-cancer immunotherapy. A variety of preanalytical conditions were tested to assure high quality plasma sample measurements: (i) different time intervals and storage temperatures before and after blood centrifugation; (ii) fresh samples and repeated freeze-thaw-cycles; (iii) different conditions of sample preparation before measurement. Concerning short-term stability, acceptable recoveries for PD-1 between 80 and 120% were obtained when samples were kept up to 24 h at 4 and 25 °C before and after blood centrifugation. Similarly, recoveries for PD-L2 were acceptable for 24 h at 4 °C and 6 h at 25 °C before blood centrifugation and up to 24 h at 4 and 25 °C after centrifugation. Variations for PD-L1 were somewhat higher, however, at very low signal levels. Sample concentrations (ng/mL) were neither affected by the freezing process nor by repeated freeze-thaw cycles with coefficients of variation for PD-1: 9.1%, PD-L1 6.8%, and PD-L2 4.8%. All three biomarkers showed good stability regarding preanalytic conditions of sample handling enabling reliable and reproducible quantification in oncoimmunology research and clinical settings of anti-cancer immunotherapy.

15.
EBioMedicine ; 85: 104305, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2068885

ABSTRACT

BACKGROUND: The pathogenesis of coronavirus disease 2019 (COVID-19) is characterized by enhanced platelet activation and diffuse hemostatic alterations, which may contribute to immunothrombosis/thromboinflammation and subsequent development of target-organ damage. Thrombopoietin (THPO), a growth factor essential to megakariocyte proliferation, is known to prime platelet activation and leukocyte-platelet interaction. In addition, THPO concentrations increase in several critical diseases, such as acute cardiac ischemia and sepsis, thus representing a potential diagnostic and prognostic biomarker. Furthermore, several data suggest that interleukin (IL)-6 is one of the most important inflammatory mediators involved in these phenomena, which led to explore the potential therapeutic role of IL-6 inhibitors. In this prospective cohort study, we aimed to study THPO and IL-6 concentrations in COVID-19 patients at the time of first clinical evaluation in the Emergency Department (ED), and to investigate their potential use as diagnostic and prognostic biomarkers. In addition, we sought to explore the role of THPO contained in plasma samples obtained from COVID-19 patients in priming in vitro platelet activation and leukocyte-platelet interaction. METHODS: We enrolled 66 patients presenting to the ED with symptoms suggestive of COVID-19, including 47 with confirmed COVID-19 and 19 in whom COVID-19 was excluded (Non-COVID-19 patients). As controls, we also recruited 18 healthy subjects. In vitro, we reproduced the effects of increased circulating THPO on platelet function by adding plasma from COVID-19 patients or controls to platelet-rich plasma or whole blood obtained by healthy donors, and we indirectly studied the effect of THPO on platelet activation by blocking its biological activity. FINDINGS: THPO levels were higher in COVID-19 patients than in both Non-COVID-19 patients and healthy subjects. Studying THPO as diagnostic marker for the diagnosis of COVID-19 by receiver-operating-characteristic (ROC) statistics, we found an area under the curve (AUC) of 0.73, with an optimal cut-off value of 42.60 pg/mL. IL-6 was higher in COVID-19 patients than in healthy subjects, but did not differ between COVID-19 and Non-COVID-19 patients. THPO concentrations measured at the time of diagnosis in the ED were also higher in COVID-19 patients subsequently developing a severe disease than in those with mild disease. Evaluating THPO as biomarker for severe COVID-19 using ROC analysis, we found an AUC of 0.71, with an optimal cut-off value of 57.11 pg/mL. IL-6 was also higher in severe than in mild COVID-19 patients, with an AUC for severe COVID-19 of 0.83 and an optimal cut-off value of 23 pg/ml. THPO concentrations correlated with those of IL-6 (r=0.2963; p=0.043), and decreased 24 h after the administration of tocilizumab, an IL-6 receptor blocking antibody, showing that the increase of THPO levels depends on IL-6-stimulated hepatic synthesis. In vitro, plasma obtained from COVID-19 patients, but not from healthy subjects, primed platelet aggregation and leukocyte-platelet binding, and these effects were reduced by inhibiting THPO activity. INTERPRETATION: Increased THPO may be proposed as an early biomarker for the diagnosis of COVID-19 and for the identification of patients at risk of developing critical illness. Elevated THPO may contribute to enhance platelet activation and leukocyte-platelet interaction in COVID-19 patients, thus potentially participating in immunothrombosis/thromboinflammation. FUNDING: This work was supported by Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST) ex 60% to GM and EL.


Subject(s)
COVID-19 , Thrombosis , Humans , Thrombopoietin/metabolism , COVID-19/diagnosis , Interleukin-6 , Prospective Studies , Inflammation , Platelet Activation , Biomarkers
16.
Indian Journal of Critical Care Medicine ; 26(10):1069-1071, 2022.
Article in English | EMBASE | ID: covidwho-2066999
17.
J Investig Allergol Clin Immunol ; 32(5): 417-418, 2022 10.
Article in English | MEDLINE | ID: covidwho-2067428
19.
J Clin Med ; 11(19)2022 Oct 09.
Article in English | MEDLINE | ID: covidwho-2066208

ABSTRACT

Myocardial injury (MI), defined by troponin elevation, has been associated with increased mortality and adverse outcomes in patients with coronavirus disease 2019 (COVID-19), but the role of this biomarker as a risk predictor remains unclear. Data from adult patients hospitalized with COVID-19 were recorded prospectively. A multiple logistic regression model was used to quantify associations of all variables with in-hospital mortality, including the calculation of odds ratios (ORs) and confidence intervals (CI). Troponin measurement was performed in 1476 of 4628 included patients, and MI was detected in 353 patients, with a prevalence of 23.9%; [95% CI, 21.8-26.1%]. The total in-hospital mortality rate was 10.9% [95% CI, 9.8-12.0%]. The mortality was much higher among patients with MI than among those without MI, with a prevalence of 22.7% [95% CI, 18.5-27.3%] vs. 5.5% [95% CI, 4.3-7.0%] and increased with each troponin level. After adjustment for age and comorbidities, the model revealed that the mortality risk was greater for patients with MI [OR = 2.99; 95% CI, 2.06-4.36%], and for those who did not undergo troponin measurement [OR = 2.2; 95% CI, 1.62-2.97%], compared to those without MI. Our data support the role of troponin as an important risk predictor for these patients, capable of discriminating between those with a low or increased mortality rate. In addition, our findings suggest that this biomarker has a remarkable negative predictive value in COVID-19.

20.
Int J Environ Res Public Health ; 19(16)2022 08 11.
Article in English | MEDLINE | ID: covidwho-2065843

ABSTRACT

Effective biomarkers for early diagnosis, prognostication, and monitoring in renal diseases (in general) comprise an unmet need. Urinary retinol-binding protein 4, which is the most sensitive indicator of renal tubular damage, holds great promise as a universal biomarker for renal pathologies, in which tubular injury is the driving force. Here, we summarize the most important existing data on the associations between urinary retinol-binding protein 4 and renal diseases and highlight the untapped potential of retinol-binding protein 4 in clinical use.


Subject(s)
Kidney Diseases , Kidney , Biomarkers , Humans
SELECTION OF CITATIONS
SEARCH DETAIL