Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Archives of Pharmacy Practice ; 13(4):74-81, 2022.
Article in English | Web of Science | ID: covidwho-2206966
2.
Phytother Res ; 37(3): 1115-1135, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2173421

ABSTRACT

Caffeic acid phenethyl ester (CAPE), a main active component of propolis and a flavonoid, is one of the natural products that has attracted attention in recent years. CAPE, which has many properties such as anti-cancer, anti-inflammatory, antioxidant, antibacterial and anti-fungal, has shown many pharmacological potentials, including protective effects on multiple organs. Interestingly, molecular docking studies showed the possibility of binding of CAPE with replication enzyme. In addition, it was seen that in order to increase the binding security of the replication enzyme and CAPE, modifications can be made at three sites on the CAPE molecule, which leads to the possibility of the compound working more powerfully and usefully to prevent the proliferation of cancer cells and reduce its rate. Also, it was found that CAPE has an inhibitory effect against the main protease enzyme and may be effective in the treatment of SARS-CoV-2. This review covers in detail the importance of CAPE in alternative medicine, its pharmacological value, its potential as a cancer anti-proliferative agent, its dual role in radioprotection and radiosensitization, and its use against coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19 , Phenylethyl Alcohol , Humans , Molecular Docking Simulation , SARS-CoV-2 , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/metabolism , Phenylethyl Alcohol/pharmacology , Caffeic Acids/chemistry , Anti-Inflammatory Agents/pharmacology , Free Radicals
3.
Int J Environ Health Res ; : 1-13, 2022 Aug 11.
Article in English | MEDLINE | ID: covidwho-1984767

ABSTRACT

Propolis is a resinous substance collected by bees (Apis mellifera). It is used for its biological properties. This natural product is available as a safe therapeutic option. Herein, we report the antiviral effects of brown propolis extract from Mexico and green and red propolis extracts from Brazil, as well as their phenolic compounds (quercetin, caffeic acid, and rutin) in preventing infection of MRC-5 cells by HCoV-229E. Normal human fibroblast lung cells (MRC-5) were used to determine the cytotoxicity of the compounds. All samples studied showed antiviral activity. Green and brown propolis extracts, and quercetin exhibited the best EC50 values with values of 19.080, 11.240, and 77.208 µg/mL against HCoV-229E, respectively, and with TC50 of 62.19, 29.192, and 298 µg/mL on MRC-5 cells, respectively. These results are the first in vitro study of the effects of propolis on HCoV-229E and provide the basis for the development of natural formulations against other coronavirus strains.

5.
Fundamental and Clinical Pharmacology ; 36:17, 2022.
Article in English | EMBASE | ID: covidwho-1968103
6.
Biomed Pharmacother ; 153: 113434, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1936096

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has led to the most severe global pandemic, which began in Wuhan, China. Angiotensin-converting enzyme 2 (ACE2) combines with the spike protein of SARS-CoV-2, allowing the virus to cross the membrane and enter the cell. SARS-CoV-2 is modified by the transmembrane protease serine 2 (TMPRSS2) to facilitate access to cells. Accordingly, ACE2 and TMPRSS2 are targets of vital importance for the avoidance of SARS-CoV-2 infection. Sanghuangporus sanghuang (SS) is a traditional Chinese medicine that has been demonstrated to have antitumor, antioxidant, anti-inflammatory, antidiabetic, hepatoprotective, neuroprotective and immunomodulatory properties. In this paper, we demonstrated that SS decreased ACE2 and TMPRSS2 expression in cell lines and a mouse model without cytotoxicity or organ damage. Liver and kidney sections were confirmed to have reduced expression of ACE2 and TMPRSS2 by immunohistochemistry (IHC) assessment. Then, hispidin, DBA, PAC, PAD and CA, phenolic compounds of SS, were also tested and verified to reduce the expression of ACE2 and TMPRSS2. In summary, the results indicate that SS and its phenolic compounds have latent capacity for preventing SARS-CoV-2 infection in the future.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Animals , Basidiomycota , Mice , Mice, Inbred DBA , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
7.
Pertanika Journal of Tropical Agricultural Science ; 45(1):235-244, 2022.
Article in English | CAB Abstracts | ID: covidwho-1727536
8.
Food Chem ; 373(Pt B): 131594, 2022 Mar 30.
Article in English | MEDLINE | ID: covidwho-1603682

ABSTRACT

The abundance of polyphenols in edible plants makes them an important component of human nutrition. Considering the ongoing COVID-19 pandemic, a number of studies have investigated polyphenols as bioactive constituents. We applied in-silico molecular docking as well as molecular dynamics supported by in-vitro assays to determine the inhibitory potential of various plant polyphenols against an important SARS-CoV-2 therapeutic target, the protease 3CLpro. Of the polyphenols in initial in-vitro screening, quercetin, ellagic acid, curcumin, epigallocatechin gallate and resveratrol showed IC50 values of 11.8 µM to 23.4 µM. In-silico molecular dynamics simulations indicated stable interactions with the 3CLpro active site over 100 ns production runs. Moreover, surface plasmon resonance spectroscopy was used to measure the binding of polyphenols to 3CLpro in real time. Therefore, we provide evidence for inhibition of SARS-CoV-2 3CLpro by natural plant polyphenols, and suggest further research into the development of these novel 3CLpro inhibitors or biochemical probes.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Polyphenols , SARS-CoV-2/drug effects , Molecular Docking Simulation , Peptide Hydrolases , Polyphenols/pharmacology
9.
Molecules ; 26(18)2021 Sep 09.
Article in English | MEDLINE | ID: covidwho-1410348

ABSTRACT

Metabolic syndrome (MetS) is a constellation of risk factors that may lead to a more sinister disease. Raised blood pressure, dyslipidemia in the form of elevated triglycerides and lowered high-density lipoprotein cholesterol, raised fasting glucose, and central obesity are the risk factors that could lead to full-blown diabetes, heart disease, and many others. With increasing sedentary lifestyles, coupled with the current COVID-19 pandemic, the numbers of people affected with MetS will be expected to grow in the coming years. While keeping these factors checked with the polypharmacy available currently, there is no single strategy that can halt or minimize the effect of MetS to patients. This opens the door for a more natural way of controlling the disease. Caffeic acid (CA) is a phytonutrient belonging to the flavonoids that can be found in abundance in plants, fruits, and vegetables. CA possesses a wide range of beneficial properties from antioxidant, immunomodulatory, antimicrobial, neuroprotective, antianxiolytic, antiproliferative, and anti-inflammatory activities. This review discusses the current discovery of the effect of CA against MetS.


Subject(s)
Caffeic Acids/pharmacology , Metabolic Syndrome/drug therapy , Animals , Humans
10.
Biotechnol Appl Biochem ; 69(2): 469-478, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1083974

ABSTRACT

Para-hydroxybenzoic acid (PHBA) has great potential in biological applications due to its putative antiviral activity against SARS-CoV-2 and its antimicrobial activity in the face of the radically increasing number of multidrug-resistant pathogens. This is in addition to its antimutagenic, anti-inflammatory, antioxidant, hypoglycemic, antiestrogenic, and antiplatelet aggregating activities. In this study, an approximate sixfold increase in the production of PHBA was achieved via biotransformation of caffeic acid by Candida albicans. The improvement was performed in two steps: first, through mutation by gamma irradiation (5 KGy dose), resulting in the recovery of a mutant (CI-24), which produced approximately triple the amount of PHBA produced by the wild-type isolate. Then, biotransformation by this mutant was further optimized via response surface methodology model-based optimization. The maximum PHBA production (7.47 mg/mL) was obtained in a fermentation medium composed of 1% w/v yeast extract as a nitrogen source, with an initial pH of 6.6, incubated at 28 °C at an agitation rate of 250 rpm. To further enhance the performance and economics of the process, cells of the CI-24 mutant were immobilized in calcium alginate beads and could retain an equivalent biotransformation capacity after three successive biotransformation cycles.


Subject(s)
COVID-19 , Candida albicans , Biotransformation , Caffeic Acids , Fermentation , Parabens , SARS-CoV-2
11.
Phytomedicine ; 85: 153310, 2021 May.
Article in English | MEDLINE | ID: covidwho-723883

ABSTRACT

BACKGROUND: SARS-CoV-2, an emerging strain of coronavirus, has affected millions of people from all the continents of world and received worldwide attention. This emerging health crisis calls for the urgent development of specific therapeutics against COVID-19 to potentially reduce the burden of this emerging pandemic. PURPOSE: This study aims to evaluate the anti-viral efficacy of natural bioactive entities against COVID-19 via molecular docking and molecular dynamics simulation. METHODS: A library of 27 caffeic-acid derivatives was screened against 5 proteins of SARS-CoV-2 by using Molegro Virtual Docker 7 to obtain the binding energies and interactions between compounds and SARS-CoV-2 proteins. ADME properties and toxicity profiles were investigated via www.swissadme.ch web tools and Toxtree respectively. Molecular dynamics simulation was performed to determine the stability of the lead-protein interactions. RESULTS: Our obtained results has uncovered khainaoside C, 6-O-Caffeoylarbutin, khainaoside B, khainaoside C and vitexfolin A as potent modulators of COVID-19 possessing more binding energies than nelfinavir against COVID-19 Mpro, Nsp15, SARS-CoV-2 spike S2 subunit, spike open state and closed state structure respectively. While Calceolarioside B was identified as pan inhibitor, showing strong molecular interactions with all proteins except SARS-CoV-2 spike glycoprotein closed state. The results are supported by 20 ns molecular dynamics simulations of the best complexes. CONCLUSION: This study will hopefully pave a way for development of phytonutrients-based antiviral therapeutic for treatment or prevention of COVID-19 and further studies are recommended to evaluate the antiviral effects of these phytochemicals against SARS-CoV-2 in in vitro and in vivo models.


Subject(s)
Antiviral Agents/pharmacology , Caffeic Acids/pharmacology , Functional Food , SARS-CoV-2/drug effects , Arbutin/analogs & derivatives , Arbutin/pharmacology , Binding Sites , Glucosides/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Spike Glycoprotein, Coronavirus/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL