Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 387
Filter
1.
Russian Journal of Infection and Immunity ; 13(1):9-28, 2023.
Article in Russian | EMBASE | ID: covidwho-2317646

ABSTRACT

The role of neutrophil granulocytes (NG) in the pathogenesis of COVID-19 is associated with the NG recruitment into inflammatory foci, activation of their functions and enhanced formation of neutrophil extracellular networks (NETs). In this review, we analyzed a large body of scientific literature devoted to the features of developing NETs, their role in the COVID-19 pathogenesis, a role in emerging immunothrombosis, vasculitis, acute respiratory distress syndrome, cytokine storm syndrome, and multi-organ lesions. Convincing data are presented clearly indicating about a profound role of NETs in the COVID-19 immunopathogenesis and associated severe complications resulting from intensified inflammation process, which is a key for the course of SARS-CoV-2 virus infection. The presented role of NGs and NETs, along with that of other immune system cells and pro-inflammatory cytokines, is extremely important in understanding development of overactive immune response in severe COVID-19. The scientific results obtained available now allow to identify an opportunity of regulatory effects on hyperactivated NGs, NETosis at various stages and on limiting a negative impact of pre-formed NETs on various tissues and organs. All the aforementioned data should help in creating new, specialized immunotherapy strategies designed to increase the odds of survival, reduce severity of clinical manifestations in COVID-19 patients as well as markedly reduce mortality rates. Currently, it is possible to use existing drugs, while a number of new drugs are being developed, the action of which can regulate NG quantity, positively affect NG functions and limit intensity of NETosis. Continuing research on the role of hyperactive NG and NETosis as well as understanding the mechanisms of regulating NET formation and restriction in severe COVID-19, apparently, are of high priority, because in the future the new data obtained could pave the basis for development of targeted approaches not only for immunotherapy aimed at limiting education and blocking negative effects already formed NETs in severe COVID-19, but also for immunotherapy, which could be used in combination treatment of other netopathies, primarily autoimmune diseases, auto-inflammatory syndromes, severe purulent-inflammatory processes, including bacterial sepsis and hematogenous osteomyelitis.Copyright © 2023 Saint Petersburg Pasteur Institute. All rights reserved.

2.
Leukemia Research ; Conference: The 17th International Congress on Myelodysplastic Syndromes. Marseille France. 128(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2316951

ABSTRACT

Background And Aims: S100A8 and S100A9 alarmins and their heterodimer calprotectin are diversely involved in myeloid neoplasm pathophysiology as well as infectious and inflammatory diseases. In the context of COVID-19, circulating calprotectin was identified as a powerful biomarker of disease severity. Calprotectin impact on CD34+ hematopoietic stem and progenitor cells remains poorly understood. Method(s): Calprotectin effects on healthy donor and chronic myeloid neoplasm-derived CD34-positive hematopoietic stem and progenitor cells were tested in liquid culture for up to 7 days. The pro-inflammatory cytokine IL-6 was used as a control. Cytokine effects alone or in combination were explored by the use of bulk and single cell RNA sequencing, Assay for Transposase-Accessible Chromatin with high-throughput sequencing, cytokine secretion analyses and semi-solid cultures. Result(s): CD34+ cells exposed to IL-6 generate monocytic cells that overproduce calprotectin. Calprotectin inhibits erythroid differentiation of healthy CD34+ cells, possibly through CD36 receptor. Chronic myeloid neoplasm CD34+ cells over-react to calprotectin, with large transcriptomic rewiring of erythro-megakarocytic and granulo-monocytic populations. Calprotectin-induced inhibition of erythroid progenitor proliferation correlates with increased synthesis of ribosomal subunits and p53 pathway activation, while the cytokine impact on granulo-monocytic cells indicates an autocrine or paracrine amplification loop. Conclusion(s): Calprotectin secreted by monocytes generated by CD34+ cells upon IL-6 stimulation may be a pathophysiological component of inflammatory anemia, a role that is amplified in the context of myeloid neoplasms in which calprotectin effects extend to the granulo-monocytic lineage.Copyright © 2023 Elsevier Ltd. All rights reserved.

3.
Neural Regeneration Research ; 18(1):38-46, 2023.
Article in English | EMBASE | ID: covidwho-2313974

ABSTRACT

Obesity is associated with several diseases, including mental health. Adipose tissue is distributed around the internal organs, acting in the regulation of metabolism by storing and releasing fatty acids and adipokine in the tissues. Excessive nutritional intake results in hypertrophy and proliferation of adipocytes, leading to local hypoxia in adipose tissue and changes in these adipokine releases. This leads to the recruitment of immune cells to adipose tissue and the release of pro-inflammatory cytokines. The presence of high levels of free fatty acids and inflammatory molecules interfere with intracellular insulin signaling, which can generate a neuroinflammatory process. In this review, we provide an up-to-date discussion of how excessive obesity can lead to possible cognitive dysfunction. We also address the idea that obesity-associated systemic inflammation leads to neuroinflammation in the brain, particularly the hypothalamus and hippocampus, and that this is partially responsible for these negative cognitive outcomes. In addition, we discuss some clinical models and animal studies for obesity and clarify the mechanism of action of anti-obesity drugs in the central nervous system.Copyright © 2023 Wolters Kluwer Medknow Publications. All rights reserved.

4.
Transplantation and Cellular Therapy ; 29(2 Supplement):S211, 2023.
Article in English | EMBASE | ID: covidwho-2312925

ABSTRACT

Background: The Sarah Cannon Transplant and Cellular Therapy Network (SCTCTN), which offers community access to transplant and cell therapy, implemented a coordinated approach to deliver CAR-T therapy through 5 programs. We conducted a retrospective review of clinical outcomes after FDA-approved anti-CD19+ CAR-T in B-cell NHL. Method(s): All patients referred for evaluation within SCTCTN were tracked in our prospective registry (Stafa-CT). We identified 110 patients who received FDA-approved anti-CD19+ CAR-T for NHL within the network between 12/10/2018 and 3/7/2022. All patients received care through standardized eligibility criteria, process, care pathways, toxicity management protocols, and a single quality plan. Result(s): The median age at referral was 60 years (range 23-82), 63% were male, the referral indication was diffuse large B-cell lymphoma (70%), mantle cell lymphoma (7%), follicular lymphoma (15%), or other B-NHL (8%). 35% had received a prior autologous transplant. The median time from referral to infusion was 143 days (range 89- 224), and from collection to infusion was 32 days. The infusion year was 2018 (1), 2019 (20), 2020 (31), 2021 (48), 2022 (10). The CAR-T cell products were Axi-cel (70), Tisa-cel (27), Brexu-cel (9), and Liso-cel (4). 16 patients (15%) were infused as outpatient, of which 10 patients were subsequently hospitalized at a median of 8 days (range 1-26) after infusion. Of the 94 patients (85%) infused as inpatient, the median length of stay was 15 days (range 6 to 85). Cytokine release syndrome (CRS) was observed in 78% with a median maximum grade 1. Maximum grade CRS was none, grade 1, grade 2, grade 3, grade 4, grade 5 in 22%, 36%, 32%, 7%, 2 % and <1%, respectively. The median times to onset and resolution of symptoms were day 3 and 8, respectively. Tocilizumab was administered to 39% for a median of 2 doses. Neurotoxicity was observed in 55% with a median maximum grade 1. Maximum grade neurotoxicity was none, grade 1, grade 2, grade 3, grade 4, grade 5 in 45%, 19%, 13%, 18%, 4 % and 0%, respectively. The median times to onset and resolution of symptoms were day 7 and 13, respectively. Neutropenia (<0.5/ muL) and thrombocytopenia (<20K/muL) at day 30 were reported in 11% and 12%, respectively. 18% required ICU stay. 37 deaths (34%) were reported from disease progression (23), infections (7, including 5 from COVID), CRS (2) and other causes (5).(Figure Presented) Conclusion(s): Administration of anti-CD19+ CAR-T is feasible in specialized community hospitals with outcomes similar to registrational clinical trials. Outpatient administration is feasible in selected patients, but subsequent hospitalization needs to be anticipated. CRS, neurotoxicity, cytopenias and infection remain challenges, while disease progression was the commonest cause of deathCopyright © 2023 American Society for Transplantation and Cellular Therapy

5.
Cells ; 12(9)2023 05 07.
Article in English | MEDLINE | ID: covidwho-2315207

ABSTRACT

We discovered a novel therapeutic target critical for SARS-CoV-2, cellular infectivity and the induction of the cytokine release syndrome. Here, we show that the mammalian enzyme neuraminidase-1 (Neu-1) is part of a highly conserved signaling platform that regulates the dimerization and activation of the ACE2 receptors and the Toll-like receptors (TLRs) implicated in the cytokine release syndrome (CRS). Activated Neu-1 cleaves glycosylated residues that provide a steric hindrance to both ACE2 and TLR dimerization, a process critical to both viral attachment to the receptor and entry into the cell and TLR activation. Blocking Neu-1 inhibited ACE2 receptor dimerization and internalization, TLR dimerization and activation, and the expression of several key inflammatory molecules implicated in the CRS and death from ARDS. Treatments that target Neu-1 are predicted to be highly effective against infection with SARS-CoV-2, given the central role played by this enzyme in viral cellular entry and the induction of the CRS.


Subject(s)
COVID-19 , Animals , SARS-CoV-2/metabolism , Peptidyl-Dipeptidase A/metabolism , Angiotensin-Converting Enzyme 2 , Cytokine Release Syndrome/drug therapy , Receptors, Virus/metabolism , Mammals/metabolism
6.
Semin Hematol ; 60(1): 52-58, 2023 01.
Article in English | MEDLINE | ID: covidwho-2314786

ABSTRACT

CAR T-cells have revolutionized the treatment of many hematological malignancies. Thousands of patients with lymphoma, acute lymphoblastic leukemia, and multiple myeloma have received this "living medicine" and achieved durable remissions. Their place in therapy continues to evolve, and there is ongoing development of new generation CAR constructs, CAR T-cells against solid tumors and CAR T-cells against chronic infections like human immunodeficiency virus and hepatitis B. A significant fraction of CAR T-cell recipients, unfortunately, develop infections. This is in part due to factors intrinsic to the patient, but also to the treatment, which requires lymphodepletion (LD), causes neutropenia and hypogammaglobulinemia and necessarily increases the state of immunosuppression of the patient. The goal of this review is to present the infectious complications of CAR T-cell therapy, explain their temporal course and risk factors, and provide recommendations for their prevention, diagnosis, and management.


Subject(s)
Hematologic Neoplasms , Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/adverse effects , T-Lymphocytes/pathology , Multiple Myeloma/therapy , Multiple Myeloma/pathology
7.
Allergy: European Journal of Allergy and Clinical Immunology ; 78(Supplement 111):318-319, 2023.
Article in English | EMBASE | ID: covidwho-2301211

ABSTRACT

Background: A simple, accurate and rapid whole blood-based T-cell test was previously developed to determine SARS-CoV- 2- specific T-cell immunity. Herein, the test was utilized to measure the magnitude of T-cell responses up to 6 months post-vaccination, assess the effects of vaccine boosters, and to elucidate any effect that Delta and Omicron variants may have on T-cell immunity. Method(s): Immunocompetent individuals (n = 44) were recruited to donate a blood sample between one-and six-months post-vaccination. Whole blood was stimulated overnight with peptides spanning immunodominant regions specific for ancestral SARS-CoV- 2. Blood plasma samples were analysed for IL-2 production via Luminex xMAP cytokine array, as this was previously demonstrated to be the most accurate biomarker for the test. Following booster vaccinations, 58 individuals donated a blood sample between one-and four-months post-booster and T-cell responses after overnight stimulations were assessed. Additionally, 30 samples were stimulated with peptides from the immunodominant regions of the Delta and Omicron SARS-CoV- 2 variants and IL-2 levels were compared. Result(s): A comparison of T-cell responses from samples donated up to one-month and six-months post-vaccination revealed no significant differences in the magnitude of IL-2 production (p = 0.9252), with near equivalent means. Booster vaccinations increased the magnitude of the T-cell response in 69% of individuals analysed, with the mean production of IL-2 rising from 77pg/ml six-months pre-booster to 141pg/ml 3-weeks post-booster. Analysis of the longevity of post-booster T-cell response demonstrated no significant differences in the magnitude of IL-2 (p = 0.8141) production, with near equivalent means at one-month and 4-months post-booster (119pg/ml and 111pg/ml, respectively). Finally, no significant differences in the magnitude of IL-2 were observed between samples stimulated with either ancestral, Delta or Omicron peptides, with the means of each group being highly comparable. Conclusion(s): Results from this rapid whole blood-based T-cell test indicate that T-cell immunity to multiple variants of SARS-CoV- 2 within immunocompetent cohorts does not wane significantly over time. However, booster vaccinations may be important for individuals who have lower levels of immunity following their first complete vaccination doses. This test could be a valuable tool in the assessment of SARS-CoV- 2 immunity in multiple cohorts of clinical vulnerable individuals.

8.
Journal of Arrhythmology ; 30(1):e6-e11, 2023.
Article in English | EMBASE | ID: covidwho-2300418

ABSTRACT

Atrial fibrillation (AF) is the most frequent form of cardiac arrhythmia in COVID-19 infected patients. The occurrence of AF paroxysms is often associated with the acute period of infection in time. At the same time, the pathophysiological mechanisms of the occurrence of AF associated with COVID-19 remain insufficiently studied. The review considers the available literature data on the influence of factors such as reduced availability of angiotensin-converting enzyme 2 receptors, interaction of the virus with the cluster of differentiation 147 and sialic acid, increased inflammatory signaling, "cytokine storm", direct viral damage to the endothelium, electrolyte and acid-alkaline balance in the acute phase of severe illness and increased sympathetic activity.Copyright © Autors 2023.

9.
Clinical Immunology Communications ; 2:118-129, 2022.
Article in English | EMBASE | ID: covidwho-2300163

ABSTRACT

Emerging research shows that innate immunity can also keep the memory of prior experiences, challenging the long-held notion that immunological memory is only the domain of the adaptive immune cells. However, the absence of immunological memory in innate immune responses has recently been brought into question. Now it is known that after a few transient activations, innate immune cells may acquire immunological memory phenotype, resulting in a stronger response to a subsequent secondary challenge. When exposed to particular microbial and/or inflammatory stimuli, trained innate immunity is characterized by the enhanced non-specific response, which is regulated by substantial metabolic alterations and epigenetic reprogramming. Trained immunity is acquired by two main reprogramming, namely, epigenetic reprogramming and metabolic adaptation/reprogramming. Epigenetic reprogramming causes changes in gene expression and cell physiology, resulting in internal cell signaling and/or accelerated and amplified cytokine release. Metabolic changes due to trained immunity induce accelerated glycolysis and glutaminolysis. As a result, trained immunity can have unfavorable outcomes, such as hyper inflammation and the development of cardiovascular diseases, autoinflammatory diseases, and neuroinflammation. In this review, the current scenario in the area of trained innate immunity, its mechanisms, and its involvement in immunological disorders are briefly outlined.Copyright © 2022

10.
Clinical Immunology Communications ; 2:154-158, 2022.
Article in English | EMBASE | ID: covidwho-2296042

ABSTRACT

Generating memory T cell responses besides humoral immune responses is essential when it comes to the efficacy of a vaccine. In this study, the presence of memory T cell responses after aluminum-adjuvanted inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac) in seronegative and seropositive elderly individuals were examined. CD4+ and CD8+ memory T cell proliferation and IFN-gamma production capacities were evaluated. Additionally, clinical frailty scale (CFS) and FRAIL scales of the individuals were scored. CD4+ memory T cell responses more prominent than CD8+ memory T cells. In seronegative individuals, 80% of them had memory CD4+ and IFN-gamma, whereas 50% of them had memory CD4+ and all of them had IFN-gamma responses. Additionally, 40% of seronegative patients and 50% of seropositive patients had memory CD8+ responses. To sum up, humoral immune responses are not associated with memory T cell responses, and in seronegative individuals, memory T cell responses can be detected.Copyright © 2022

11.
Allergy: European Journal of Allergy and Clinical Immunology ; 78(Supplement 111):703-704, 2023.
Article in English | EMBASE | ID: covidwho-2293763

ABSTRACT

Case report Trometamol (tromethamine, tris(hydroxymethyl)aminomethane (TRIS)) is an excipient frequently used as buffer in fluids and semisolid agents, including many drugs such as antibiotics, iodinated contrast agents and the COVID-19 vaccine mRNA-1273. Here, we report the first case of a delayed-type hypersensitivity after oral intake of trometamol. A 64-year- old female patient presented to our emergency department with generalized erythematous rash, pruritus and swelling of the face five hours after the intake of one tablet of fosfomycin trometamol for a urinary tract infection. Further medical history revealed a previous erythematous rash five to six hours after administration of the iodinated contrast agent iopromide. We performed skin prick and intradermal tests with trometamol, fosfomycin trometamol and various iodinated contrast agents, including iopromide, iomeprol, iobitridol, iopamidol and iodixanol. These tests showed no reactions initially. However, 48 hours after intradermal testing, macular erythematous lesions developed at the sites tested with trometamol 0.1%, trometamol 0.01% and all sites tested with iodinated contrast agents. Furthermore, when we performed a lymphocyte transformation test with trometamol, fosfomycin trometamol and iopromide, we recorded a positive reaction with cytokine release after stimulating T cells with trometamol and iopromide. In contrast, basophil activation testing showed a negative result for these agents. Based on these results and our patient's history, we diagnosed a clinically relevant type IV sensitization to trometamol. There are only a few case reports about immediate-type allergic reactions to gadolinium contrast agents caused by the excipient trometamol. There are some published cases which report contact dermatitis after topical administration of trometamol-containing agents. To our knowledge, ours is the first case to report a delayed hypersensitivity reaction to oral administration of trometamol. Excipients are indispensable for drugs, vaccines and other products since they stabilize and preserve the active agents. Nevertheless, excipients should always be considered during an allergy workup, especially if the patient reports prior drug reactions that cannot be explained by a chemical cross-reaction. In our case, we diagnosed delayed-type hypersensitivity to the excipient trometamol. This is a consequential diagnosis for the patient, because trometamol is contained in many drugs and in the COVID-19 vaccine mRNA-1273.

12.
Chinese Journal of Tissue Engineering Research ; 23(10):1618-1625, 2023.
Article in Chinese | Academic Search Complete | ID: covidwho-2306698

ABSTRACT

BACKGROUND: Corona Virus Disease 2019 (COVID-19) is a highly contagious, rapidly variable, and dangerous infectious disease. However, no specific and effective treatment for COVID-19 is available until now. The safety and efficacy of mesenchymal stem cells and their exosomes have been well verified in numerous clinical trials. Their immunomodulatory and tissue regeneration capabilities may support them as a prospective therapy for COVID-19 application in the clinic. OBJECTIVE: To focus on the development, pathogenesis and the current treatment status of COVID-19, efficacy and possible immunomodulatory mechanisms of mesenchymal stem cells and their exosomes for COVID-19 so as to provide new insights into the clinical treatment for the disease in the future. METHODS: Articles were searched on PubMed and CNKI with the key words of "SARS-CoV-2, COVID-19, cytokine storm, acute respiratory distress syndrome, mesenchymal stem cells, exosomes, immune regulation, tissue repair” in Chinese and English. Finally, 64 articles were collected for this review. RESULTS AND CONCLUSION: Acute respiratory distress syndrome and acute lung injury caused by cytokine storm are the primary precipitating factors of death in individuals with COVID-19. Mesenchymal stem cells and their exosomes can effectively treat the symptoms of acute respiratory distress syndrome and repair the damaged lung tissue in COVID-19 patients by reducing the cytokine storm and promoting the regeneration of alveolar epithelial cells through the interaction with immune cells and their paracrine effects. All of these investigations confirmed that mesenchymal stem cells and their exosomes can fight the COVID-19 infection, and this might be a promising, safe and effective strategy. However, more preclinical studies and randomized, controlled clinical trials are needed to conduct the biodistribution, metabolic fate, and the potential treatment risks of mesenchymal stem cells and their derived exosomes in vivo to fully exploit their clinical efficacy. (English) [ FROM AUTHOR] 背景:2019 冠状病毒病 (Corona Virus Disease 2019,COVID-19) 的传播性强、变异速度快、且危害较大,目前没有针对 COVID-19 的特异治疗 策略。间充质干细胞及其外泌体的安全性和有效性已在众多临床试验中得到证实,其具有的免疫调节和组织修复能力,可作为COVID-19 前 瞻性疗法的主要应用依据,具有巨大的治疗潜力。 目的:重点阐述 COVID-19 的发生发展、致病机制、治疗现状,以及间充质干细胞与其衍生外泌体治疗 COVID-19 患者的有效性和可能的免疫 调控机制,为该疾病的临床治疗提供更多的理论参考。 方法:通过检索PubMed、中国知网数据库中收录的相关文献,英文搜索词为:"SARS-CoV-2,COVID-19,cytokine storm,acute respiratory distress syndrome,mesenchymal stem cells,exosomes,immune regulation,tissue repair”,中文搜索词为:"新型冠状病毒,2019 冠状病 毒病,细胞因子风暴,急性呼吸窘迫综合征,间充质干细胞,外泌体,免疫调节,组织修复”,最终对64篇文献进行归纳总结。 结果与结论:由细胞因子风暴所引起的急性呼吸窘迫综合征和急性肺损伤是导致 COVID-19 重症患者出现死亡的主要原因。间充质干细胞及 其外泌体通过与免疫细胞之间的相互作用及其旁分泌效应,降低 COVID-19 患者体内细胞因子风暴同时促进其肺泡上皮细胞再生,可有效治 疗急性呼吸窘迫综合征且能够修复其损伤肺组织,证明是一种能够对抗 COVID-19 感染且安全、有效的治疗策略。不过仍然需要更多的临床 前和随机对照临床试验对间充质干细胞及其外泌体移植后的生物分布、体内代谢命运、潜在风险进行更多的研究,以便于更充分发挥其临 床疗效。 (Chinese) [ FROM AUTHOR] Copyright of Chinese Journal of Tissue Engineering Research / Zhongguo zu zhi gong cheng yan jiu is the property of Chinese Journal of Tissue Engineering Research and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

13.
Russian Journal of Evidence-Based Gastroenterology ; 11(2):39-43, 2022.
Article in Russian | EMBASE | ID: covidwho-2304613

ABSTRACT

Objective. We analyzed clinical features and laboratory markers of COVID-19 patients according to favorable outcomes versus fatal outcomes. Material and methods. The medical history of 80 patients was analyzed: 51 patients with favorable outcomes were included in group 1, 29 patients with a fatal outcome were included in group 2. Demographic data, duration of the disease, comorbid-ities, laboratory markers, and results of the instrumental studies were included. The ammonia level in the peripheral blood was de-termined by the express method using a PocketChem BA 4140 photometric portable analyzer. Results. Patients in group 2 were older (68+/-11 years) had hypertension stage 3 with high cardiovascular risk;every third had a history of myocardial infarction. At admission, patients from group 2 were most likely with febrile fever and high levels of inflammatory markers - predictors of a cytokine release syndrome. In addition, 71% of patients at admission had elevated ammonia levels. Hyperammonemia correlated with high ferritin levels, leukopenia, non-alcoholic fatty liver disease in patients, and lethal outcomes. Conclusions. The risks of poor COVID-19 outcomes are higher in comorbid patients of the older age group. Hyperammonemia may be one of the predictors of poor COVID-19 outcomes.Copyright © 2022, Media Sphera Publishing Group. All rights reserved.

14.
Ther Apher Dial ; 2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2294262

ABSTRACT

INTRODUCTION: Plasmapheresis and hemoperfusion are used against cytokine release syndrome in COVID-19. This study aims to compare their outcomes, costs, and side-effects. METHODS: Survival, costs and side-effects were compared in intensive care unit (ICU) patients receiving plasmapheresis (n = 49), hemoperfusion (n = 20), or none (n = 107), followed until death or discharge. RESULTS: Plasmapheresis survival time was higher than hemoperfusion or controls (HR = 0.764, p = 0.397 and HR = 0.483, p = 0.002, respectively), although the latter diminished after controlling for age and disease severity (p = 0.979). There was no significant difference in ICU costs for plasmapheresis and hemoperfusion (p = 0.738) while both costed more than controls (both p < 0.001). Hypocalcemia and thrombocytopenia incidence did not differ between two groups (p = 0.124 and p = 0.389, respectively) while being higher than controls in plasmapheresis (both p < 0.001) and hemoperfusion (p < 0.001 and p = 0.056, respectively). CONCLUSION: Plasmapheresis and hemoperfusion do not differ significantly in patient survival, ICU costs and side-effects with a higher incidence of hypocalcemia and thrombocytopenia compared witcontrols.

15.
Postep Psychiatr Neurol ; 31(1): 35-37, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-2295672

ABSTRACT

Purpose: This case reports on anomic aphasia related to COVID-19. Increasing knowledge about rare symptoms and complications may aid in the characterization of the disease, understand its pathophysiology, identify more quickly possible infected people and break the transmission chain. Case description: This work reports on the case of a middle-aged man who presented to his assistant psychiatrist complaining about difficulty with naming objects in his daily routine surroundings, with ten weeks of duration and following a SARS-CoV-2 infection. The organic study, including brain magnetic resonance imaging, was unremarkable. The symptoms resolved spontaneously within fourteen weeks. Comment: Neurological manifestations of COVID-19 may be related to the dysfunction of the blood-brain barrier, resulting in immune cell infiltration and neuroinflammation that can persist for weeks or months after the resolution of the infection. Weakened health after overcoming the infection acute phase is being reported increasingly and called post-COVID-syndrome. Rare disorders such anomic aphasia can occur in this syndrome.

16.
Cureus ; 15(3): e35909, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2300297

ABSTRACT

A 32-year-old patient with COVID-19 pneumonia and pericardial effusion mistakenly took 15 mg of colchicine over 10 hours. He developed diarrhea that resolved two days after colchicine was stopped. Remarkably, this single overdose of colchicine, without any additional therapy, resulted in the complete recovery of bilateral pneumonia and pericardial effusion, and the patient was discharged on the hospital day 9th. This case demonstrates the possibility that high colchicine doses may have a major role and a dramatic effect in the treatment of COVID-19 patients.

17.
Chinese Journal of Tissue Engineering Research ; 23(10):1618-1625, 2023.
Article in Chinese | Academic Search Complete | ID: covidwho-2289274

ABSTRACT

BACKGROUND: Corona Virus Disease 2019 (COVID-19) is a highly contagious, rapidly variable, and dangerous infectious disease. However, no specific and effective treatment for COVID-19 is available until now. The safety and efficacy of mesenchymal stem cells and their exosomes have been well verified in numerous clinical trials. Their immunomodulatory and tissue regeneration capabilities may support them as a prospective therapy for COVID-19 application in the clinic. OBJECTIVE: To focus on the development, pathogenesis and the current treatment status of COVID-19, efficacy and possible immunomodulatory mechanisms of mesenchymal stem cells and their exosomes for COVID-19 so as to provide new insights into the clinical treatment for the disease in the future. METHODS: Articles were searched on PubMed and CNKI with the key words of "SARS-CoV-2, COVID-19, cytokine storm, acute respiratory distress syndrome, mesenchymal stem cells, exosomes, immune regulation, tissue repair” in Chinese and English. Finally, 64 articles were collected for this review. RESULTS AND CONCLUSION: Acute respiratory distress syndrome and acute lung injury caused by cytokine storm are the primary precipitating factors of death in individuals with COVID-19. Mesenchymal stem cells and their exosomes can effectively treat the symptoms of acute respiratory distress syndrome and repair the damaged lung tissue in COVID-19 patients by reducing the cytokine storm and promoting the regeneration of alveolar epithelial cells through the interaction with immune cells and their paracrine effects. All of these investigations confirmed that mesenchymal stem cells and their exosomes can fight the COVID-19 infection, and this might be a promising, safe and effective strategy. However, more preclinical studies and randomized, controlled clinical trials are needed to conduct the biodistribution, metabolic fate, and the potential treatment risks of mesenchymal stem cells and their derived exosomes in vivo to fully exploit their clinical efficacy. (English) [ABSTRACT FROM AUTHOR] 背景:2019 冠状病毒病 (Corona Virus Disease 2019,COVID-19) 的传播性强、变异速度快、且危害较大,目前没有针对 COVID-19 的特异治疗 策略。间充质干细胞及其外泌体的安全性和有效性已在众多临床试验中得到证实,其具有的免疫调节和组织修复能力,可作为COVID-19 前 瞻性疗法的主要应用依据,具有巨大的治疗潜力。 目的:重点阐述 COVID-19 的发生发展、致病机制、治疗现状,以及间充质干细胞与其衍生外泌体治疗 COVID-19 患者的有效性和可能的免疫 调控机制,为该疾病的临床治疗提供更多的理论参考。 方法:通过检索PubMed、中国知网数据库中收录的相关文献,英文搜索词为:"SARS-CoV-2,COVID-19,cytokine storm,acute respiratory distress syndrome,mesenchymal stem cells,exosomes,immune regulation,tissue repair”,中文搜索词为:"新型冠状病毒,2019 冠状病 毒病,细胞因子风暴,急性呼吸窘迫综合征,间充质干细胞,外泌体,免疫调节,组织修复”,最终对64篇文献进行归纳总结。 结果与结论:由细胞因子风暴所引起的急性呼吸窘迫综合征和急性肺损伤是导致 COVID-19 重症患者出现死亡的主要原因。间充质干细胞及 其外泌体通过与免疫细胞之间的相互作用及其旁分泌效应,降低 COVID-19 患者体内细胞因子风暴同时促进其肺泡上皮细胞再生,可有效治 疗急性呼吸窘迫综合征且能够修复其损伤肺组织,证明是一种能够对抗 COVID-19 感染且安全、有效的治疗策略。不过仍然需要更多的临床 前和随机对照临床试验对间充质干细胞及其外泌体移植后的生物分布、体内代谢命运、潜在风险进行更多的研究,以便于更充分发挥其临 床疗效。 (Chinese) [ABSTRACT FROM AUTHOR] Copyright of Chinese Journal of Tissue Engineering Research / Zhongguo zu zhi gong cheng yan jiu is the property of Chinese Journal of Tissue Engineering Research and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

18.
Chinese Journal of Tissue Engineering Research ; 23(10):1618-1625, 2023.
Article in Chinese | Academic Search Complete | ID: covidwho-2289273

ABSTRACT

BACKGROUND: Corona Virus Disease 2019 (COVID-19) is a highly contagious, rapidly variable, and dangerous infectious disease. However, no specific and effective treatment for COVID-19 is available until now. The safety and efficacy of mesenchymal stem cells and their exosomes have been well verified in numerous clinical trials. Their immunomodulatory and tissue regeneration capabilities may support them as a prospective therapy for COVID-19 application in the clinic. OBJECTIVE: To focus on the development, pathogenesis and the current treatment status of COVID-19, efficacy and possible immunomodulatory mechanisms of mesenchymal stem cells and their exosomes for COVID-19 so as to provide new insights into the clinical treatment for the disease in the future. METHODS: Articles were searched on PubMed and CNKI with the key words of "SARS-CoV-2, COVID-19, cytokine storm, acute respiratory distress syndrome, mesenchymal stem cells, exosomes, immune regulation, tissue repair” in Chinese and English. Finally, 64 articles were collected for this review. RESULTS AND CONCLUSION: Acute respiratory distress syndrome and acute lung injury caused by cytokine storm are the primary precipitating factors of death in individuals with COVID-19. Mesenchymal stem cells and their exosomes can effectively treat the symptoms of acute respiratory distress syndrome and repair the damaged lung tissue in COVID-19 patients by reducing the cytokine storm and promoting the regeneration of alveolar epithelial cells through the interaction with immune cells and their paracrine effects. All of these investigations confirmed that mesenchymal stem cells and their exosomes can fight the COVID-19 infection, and this might be a promising, safe and effective strategy. However, more preclinical studies and randomized, controlled clinical trials are needed to conduct the biodistribution, metabolic fate, and the potential treatment risks of mesenchymal stem cells and their derived exosomes in vivo to fully exploit their clinical efficacy. (English) [ABSTRACT FROM AUTHOR] 背景:2019 冠状病毒病 (Corona Virus Disease 2019,COVID-19) 的传播性强、变异速度快、且危害较大,目前没有针对 COVID-19 的特异治疗 策略。间充质干细胞及其外泌体的安全性和有效性已在众多临床试验中得到证实,其具有的免疫调节和组织修复能力,可作为COVID-19 前 瞻性疗法的主要应用依据,具有巨大的治疗潜力。 目的:重点阐述 COVID-19 的发生发展、致病机制、治疗现状,以及间充质干细胞与其衍生外泌体治疗 COVID-19 患者的有效性和可能的免疫 调控机制,为该疾病的临床治疗提供更多的理论参考。 方法:通过检索PubMed、中国知网数据库中收录的相关文献,英文搜索词为:"SARS-CoV-2,COVID-19,cytokine storm,acute respiratory distress syndrome,mesenchymal stem cells,exosomes,immune regulation,tissue repair”,中文搜索词为:"新型冠状病毒,2019 冠状病 毒病,细胞因子风暴,急性呼吸窘迫综合征,间充质干细胞,外泌体,免疫调节,组织修复”,最终对64篇文献进行归纳总结。 结果与结论:由细胞因子风暴所引起的急性呼吸窘迫综合征和急性肺损伤是导致 COVID-19 重症患者出现死亡的主要原因。间充质干细胞及 其外泌体通过与免疫细胞之间的相互作用及其旁分泌效应,降低 COVID-19 患者体内细胞因子风暴同时促进其肺泡上皮细胞再生,可有效治 疗急性呼吸窘迫综合征且能够修复其损伤肺组织,证明是一种能够对抗 COVID-19 感染且安全、有效的治疗策略。不过仍然需要更多的临床 前和随机对照临床试验对间充质干细胞及其外泌体移植后的生物分布、体内代谢命运、潜在风险进行更多的研究,以便于更充分发挥其临 床疗效。 (Chinese) [ABSTRACT FROM AUTHOR] Copyright of Chinese Journal of Tissue Engineering Research / Zhongguo zu zhi gong cheng yan jiu is the property of Chinese Journal of Tissue Engineering Research and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

19.
Chinese Journal of Tissue Engineering Research ; 23(10):1618-1625, 2023.
Article in Chinese | Academic Search Complete | ID: covidwho-2289272

ABSTRACT

BACKGROUND: Corona Virus Disease 2019 (COVID-19) is a highly contagious, rapidly variable, and dangerous infectious disease. However, no specific and effective treatment for COVID-19 is available until now. The safety and efficacy of mesenchymal stem cells and their exosomes have been well verified in numerous clinical trials. Their immunomodulatory and tissue regeneration capabilities may support them as a prospective therapy for COVID-19 application in the clinic. OBJECTIVE: To focus on the development, pathogenesis and the current treatment status of COVID-19, efficacy and possible immunomodulatory mechanisms of mesenchymal stem cells and their exosomes for COVID-19 so as to provide new insights into the clinical treatment for the disease in the future. METHODS: Articles were searched on PubMed and CNKI with the key words of "SARS-CoV-2, COVID-19, cytokine storm, acute respiratory distress syndrome, mesenchymal stem cells, exosomes, immune regulation, tissue repair” in Chinese and English. Finally, 64 articles were collected for this review. RESULTS AND CONCLUSION: Acute respiratory distress syndrome and acute lung injury caused by cytokine storm are the primary precipitating factors of death in individuals with COVID-19. Mesenchymal stem cells and their exosomes can effectively treat the symptoms of acute respiratory distress syndrome and repair the damaged lung tissue in COVID-19 patients by reducing the cytokine storm and promoting the regeneration of alveolar epithelial cells through the interaction with immune cells and their paracrine effects. All of these investigations confirmed that mesenchymal stem cells and their exosomes can fight the COVID-19 infection, and this might be a promising, safe and effective strategy. However, more preclinical studies and randomized, controlled clinical trials are needed to conduct the biodistribution, metabolic fate, and the potential treatment risks of mesenchymal stem cells and their derived exosomes in vivo to fully exploit their clinical efficacy. (English) [ABSTRACT FROM AUTHOR] 背景:2019 冠状病毒病 (Corona Virus Disease 2019,COVID-19) 的传播性强、变异速度快、且危害较大,目前没有针对 COVID-19 的特异治疗 策略。间充质干细胞及其外泌体的安全性和有效性已在众多临床试验中得到证实,其具有的免疫调节和组织修复能力,可作为COVID-19 前 瞻性疗法的主要应用依据,具有巨大的治疗潜力。 目的:重点阐述 COVID-19 的发生发展、致病机制、治疗现状,以及间充质干细胞与其衍生外泌体治疗 COVID-19 患者的有效性和可能的免疫 调控机制,为该疾病的临床治疗提供更多的理论参考。 方法:通过检索PubMed、中国知网数据库中收录的相关文献,英文搜索词为:"SARS-CoV-2,COVID-19,cytokine storm,acute respiratory distress syndrome,mesenchymal stem cells,exosomes,immune regulation,tissue repair”,中文搜索词为:"新型冠状病毒,2019 冠状病 毒病,细胞因子风暴,急性呼吸窘迫综合征,间充质干细胞,外泌体,免疫调节,组织修复”,最终对64篇文献进行归纳总结。 结果与结论:由细胞因子风暴所引起的急性呼吸窘迫综合征和急性肺损伤是导致 COVID-19 重症患者出现死亡的主要原因。间充质干细胞及 其外泌体通过与免疫细胞之间的相互作用及其旁分泌效应,降低 COVID-19 患者体内细胞因子风暴同时促进其肺泡上皮细胞再生,可有效治 疗急性呼吸窘迫综合征且能够修复其损伤肺组织,证明是一种能够对抗 COVID-19 感染且安全、有效的治疗策略。不过仍然需要更多的临床 前和随机对照临床试验对间充质干细胞及其外泌体移植后的生物分布、体内代谢命运、潜在风险进行更多的研究,以便于更充分发挥其临 床疗效。 (Chinese) [ABSTRACT FROM AUTHOR] Copyright of Chinese Journal of Tissue Engineering Research / Zhongguo zu zhi gong cheng yan jiu is the property of Chinese Journal of Tissue Engineering Research and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

20.
Pakistan Armed Forces Medical Journal ; 72(6):2041, 2022.
Article in English | ProQuest Central | ID: covidwho-2250265

ABSTRACT

Objective: To determine the role of Methylprednisolone in managing COVID-19 patients. Study Design: Cross-sectional study. Place and Duration of Study: Pakistan Emirates Military Hospital (PEMH), Rawalpindi Pakistan, from Jan to Feb 2021. Methodology: This study was carried out at the Department of Medicine. Medical records of all moderate, severe and critical COVID-19 patients admitted and receiving Methylprednisolone were reviewed. Methylprednisolone was used in all patients at doses 0.-2 mg per kg. Results: A total of 200 cases were included. The most common presenting symptoms were cough (77.5%), fever (67.5%) and shortness of breath (63.5%). Most patients (85%) presented within the first week of their illness. One or more comorbidities were present in 75% of patients. Most common being hypertension in 70(35%) and diabetes mellitus in 63(31.5%). Complications seen in the study were Cytokine release storm 92(46%) and acute respiratory distress syndrome 44(22%). The median time for initiation of corticosteroid therapy was 4 hours (range 1-96 hours). Overall survival (OS) in the study was 83.5%. OS for patients with moderate, severe and critical diseases was 97.8%, 86.2% and 62%, respectively (p<0.001). Conclusion: Corticosteroids are useful in COVID-19-admitted patients and provide excellent survival outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL