Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
Cells ; 11(17):2620, 2022.
Article in English | ProQuest Central | ID: covidwho-2023201

ABSTRACT

Alcohol and several therapeutic drugs, including acetaminophen, are metabolized by cytochrome P450 2E1 (CYP2E1) into toxic compounds. At low levels, these compounds are not detrimental, but higher sustained levels of these compounds can lead to life-long problems such as cytotoxicity, organ damage, and cancer. Furthermore, CYP2E1 can facilitate or enhance the effects of alcohol-drug and drug-drug interactions. In this review, we discuss the role of CYP2E1 in the metabolism of alcohol and drugs (with emphasis on acetaminophen), mediating injury/toxicities, and drug-drug/alcohol-drug interactions. Next, we discuss various compounds and various nutraceuticals that can reduce or prevent alcohol/drug-induced toxicity. Additionally, we highlight experimental outcomes of alcohol/drug-induced toxicity and potential treatment strategies. Finally, we cover the role and implications of extracellular vesicles (EVs) containing CYP2E1 in hepatic and extrahepatic cells and provide perspectives on the clinical relevance of EVs containing CYP2E1 in intracellular and intercellular communications leading to drug-drug and alcohol-drug interactions. Furthermore, we provide our perspectives on CYP2E1 as a druggable target using nutraceuticals and the use of EVs for targeted drug delivery in extrahepatic and hepatic cells, especially to treat cellular toxicity.

2.
Cells ; 11(15)2022 Jul 30.
Article in English | MEDLINE | ID: covidwho-1993937

ABSTRACT

The consumption of human milk by a breastfeeding infant is associated with positive health outcomes, including lower risk of diarrheal disease, respiratory disease, otitis media, and in later life, less risk of chronic disease. These benefits may be mediated by antibodies, glycoproteins, glycolipids, oligosaccharides, and leukocytes. More recently, human milk extracellular vesicles (hMEVs) have been identified. HMEVs contain functional cargos, i.e., miRNAs and proteins, that may transmit information from the mother to promote infant growth and development. Maternal health conditions can influence hMEV composition. This review summarizes hMEV biogenesis and functional contents, reviews the functional evidence of hMEVs in the maternal-infant health relationship, and discusses challenges and opportunities in hMEV research.


Subject(s)
Extracellular Vesicles , MicroRNAs , Breast Feeding , Female , Humans , Infant , MicroRNAs/metabolism , Milk, Human/metabolism , Oligosaccharides/metabolism
3.
Stem Cell Res Ther ; 13(1): 410, 2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-1993380

ABSTRACT

Since December 2019, the coronavirus (COVID-19) pandemic has imposed huge burdens to the whole world, seriously affecting global economic growth, and threatening people's lives and health. At present, some therapeutic regimens are available for treatment of COVID-19 pneumonia, including antiviral therapy, immunity therapy, anticoagulant therapy, and others. Among them, injection of mesenchymal stem cells (MSCs) is currently a promising therapy. The preclinical studies and clinical trials using MSCs and small extracellular vesicles derived from MSCs (MSC-sEVs) in treating COVID-19 were summarized. Then, the molecular mechanism, feasibility, and safety of treating COVID-19 with MSCs and MSC-sEVs were also discussed.


Subject(s)
COVID-19 , Coronavirus Infections , Extracellular Vesicles , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , COVID-19/drug therapy , COVID-19/therapy , Coronavirus Infections/therapy , Humans
4.
Stem Cell Rev Rep ; 2022.
Article in English | PubMed | ID: covidwho-1990763

ABSTRACT

COVID-19 and infectious diseases have been included in strategic development goals (SDG) of United Nations (UN). Severe form of COVID-19 has been described as an endothelial disease. In order to better evaluate Covid-19 endotheliopathy, we characterized several subsets of circulating endothelial extracellular vesicles (EVs) at hospital admission among a cohort of 60 patients whose severity of COVID-19 was classified at the time of inclusion. Degree of COVID-19 severity was determined upon inclusion and categorized as moderate to severe in 40 patients and critical in 20 patients. We measured citrated plasma EVs expressing endothelial membrane markers. Endothelial EVs were defined as harboring VE-cadherin (CD144+), PECAM-1 (CD31 + CD41-) or E-selectin (CD62E+). An increase in CD62E + EV levels on admission to the hospital was significantly associated with critical disease. Moreover, Kaplan-Meier survival curves for CD62E + EV level showed that level ≥ 88,053 EVs/μL at admission was a significant predictor of in hospital mortality (p = 0.004). Moreover, CD62E + EV level ≥ 88,053 EV/μL was significantly associated with higher in-hospital mortality (OR 6.98, 95% CI 2.1-26.4, p = 0.002) in a univariate logistic regression model, while after adjustment to BMI CD62E + EV level ≥ 88,053 EV/μL was always significantly associated with higher in-hospital mortality (OR 5.1, 95% CI 1.4-20.0, p = 0.01). The present findings highlight the potential interest of detecting EVs expressing E-selectin (CD62) to discriminate Covid-19 patients at the time of hospital admission and identify individuals with higher risk of fatal outcome.

5.
J Extracell Vesicles ; 11(8): e12257, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1990462

ABSTRACT

COVID-19 is characterized by a wide spectrum of disease severity, whose indicators and underlying mechanisms need to be identified. The role of extracellular vesicles (EVs) in COVID-19 and their biomarker potential, however, remains largely unknown. Aiming to identify specific EV signatures of patients with mild compared to severe COVID-19, we characterized the EV composition of 20 mild and 26 severe COVID-19 patients along with 16 sex and age-matched healthy donors with a panel of eight different antibodies by imaging flow cytometry (IFCM). We correlated the obtained data with 37 clinical, prerecorded biochemical and immunological parameters. Severe patients' sera contained increased amounts of CD13+ and CD82+ EVs, which positively correlated with IL-6-producing and circulating myeloid-derived suppressor cells (MDSCs) and with the serum concentration of proinflammatory cytokines, respectively. Sera of mild COVID-19 patients contained more HLA-ABC+ EVs than sera of the healthy donors and more CD24+ EVs than severe COVID-19 patients. Their increased abundance negatively correlated with disease severity and accumulation of MDSCs, being considered as key drivers of immunopathogenesis in COVID-19. Altogether, our results support the potential of serum EVs as powerful biomarkers for COVID-19 severity and pave the way for future investigations aiming to unravel the role of EVs in COVID-19 progression.

6.
Front Cell Infect Microbiol ; 12: 926352, 2022.
Article in English | MEDLINE | ID: covidwho-1987473

ABSTRACT

Background: Extracellular vesicles (EVs) are a valuable source of biomarkers and display the pathophysiological status of various diseases. In COVID-19, EVs have been explored in several studies for their ability to reflect molecular changes caused by SARS-CoV-2. Here we provide insights into the roles of EVs in pathological processes associated with the progression and severity of COVID-19. Methods: In this study, we used a label-free shotgun proteomic approach to identify and quantify alterations in EV protein abundance in severe COVID-19 patients. We isolated plasma extracellular vesicles from healthy donors and patients with severe COVID-19 by size exclusion chromatography (SEC). Then, flow cytometry was performed to assess the origin of EVs and to investigate the presence of circulating procoagulant EVs in COVID-19 patients. A total protein extraction was performed, and samples were analyzed by nLC-MS/MS in a Q-Exactive HF-X. Finally, computational analysis was applied to signify biological processes related to disease pathogenesis. Results: We report significant changes in the proteome of EVs from patients with severe COVID-19. Flow cytometry experiments indicated an increase in total circulating EVs and with tissue factor (TF) dependent procoagulant activity. Differentially expressed proteins in the disease groups were associated with complement and coagulation cascades, platelet degranulation, and acute inflammatory response. Conclusions: The proteomic data reinforce the changes in the proteome of extracellular vesicles from patients infected with SARS-CoV-2 and suggest a role for EVs in severe COVID-19.


Subject(s)
COVID-19 , Extracellular Vesicles , Extracellular Vesicles/metabolism , Humans , Proteome/metabolism , Proteomics/methods , SARS-CoV-2 , Tandem Mass Spectrometry
7.
SSRN; 2022.
Preprint in English | SSRN | ID: ppcovidwho-341906

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19 disease has resulted in the death of millions worldwide since the beginning of the pandemic in December 2019. While much progress has been made to understand acute manifestations of SARS-CoV-2 infection, less is known about post-acute sequelae of COVID-19 (PASC). We investigated the levels of circulating SARS-CoV-2 components, Spike protein and viral RNA, in patients hospitalized with acute COVID-19 and in patients with and without PASC. In hospitalized patients with acute COVID-19 (n=116), we observed a positive correlation of Spike protein with D-dimer, length of hospitalization, and peak WHO score while viral RNA correlated with a tissue injury marker, lactate dehydrogenase (LDH). When comparing patients with post-COVID symptoms (n=33) and patients without (n=14), we found that Spike protein and viral RNA were more likely to be present in patients with PASC and in some cases at higher levels compared to acute COVID-19 patients. We also observed that the percent positivity of circulating viral RNA increased in the PASC positive individuals compared to acute COVID-19 group while Spike protein positivity remained the same. Additionally, we report that part of the circulating Spike protein is linked to extracellular vesicles without any presence of viral RNA in these vesicles. In conclusion, our findings suggest that Spike protein and/or viral RNA fragments persist in the recovered COVID-19 patients with PASC, regardless of their presence or absence during the acute COVID-19 phase. These results may help in understanding the reason(s) for why patients experience PASC symptoms and may offer potential therapeutic targets.

8.
Matter ; 2022 Jul 11.
Article in English | MEDLINE | ID: covidwho-1983634

ABSTRACT

Respiratory diseases are a global burden, with millions of deaths attributed to pulmonary illnesses and dysfunctions. Therapeutics have been developed, but they present major limitations regarding pulmonary bioavailability and product stability. To circumvent such limitations, we developed room-temperature-stable inhalable lung-derived extracellular vesicles or exosomes (Lung-Exos) as mRNA and protein drug carriers. Compared with standard synthetic nanoparticle liposomes (Lipos), Lung-Exos exhibited superior distribution to the bronchioles and parenchyma and are deliverable to the lungs of rodents and nonhuman primates (NHPs) by dry powder inhalation. In a vaccine application, severe acute respiratory coronavirus 2 (SARS-CoV-2) spike (S) protein encoding mRNA-loaded Lung-Exos (S-Exos) elicited greater immunoglobulin G (IgG) and secretory IgA (SIgA) responses than its loaded liposome (S-Lipo) counterpart. Importantly, S-Exos remained functional at room-temperature storage for one month. Our results suggest that extracellular vesicles can serve as an inhaled mRNA drug-delivery system that is superior to synthetic liposomes.

9.
Tissue Engineering Part A ; 28:S641-S642, 2022.
Article in English | Web of Science | ID: covidwho-1981253
10.
Nano Today ; 46: 101580, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1977678

ABSTRACT

The spread of coronavirus diseases has resulted in a clarion call to develop potent drugs and vaccines even as different strains appear beyond human prediction. An initial step that is integral to the viral entry into host cells results from an active-targeted interaction of the viral spike (S) proteins and the cell surface receptor, called angiotensin-converting enzyme 2 (ACE2). Thus, engineered ACE2 has been an interesting decoy inhibitor against emerging coronavirus infestation. This article discusses promising innovative ACE2 engineering pathways for current and emerging coronavirus therapeutic development. First, we provide a brief discussion of some ACE2-associated human coronaviruses and their cell invasion mechanism. Then, we describe and contrast the individual spike proteins and ACE2 receptor interactions, highlighting crucial hotspots across the ACE2-associated coronaviruses. Lastly, we address the importance of multivalency in ACE2 nanomedicine engineering and discuss novel approaches to develop and achieve multivalent therapeutic outcomes. Beyond coronaviruses, these approaches will serve as a paradigm to develop new and improved treatment technologies against pathogens that use ACE2 receptor for invasion.

11.
Front Cell Dev Biol ; 10: 914891, 2022.
Article in English | MEDLINE | ID: covidwho-1957148

ABSTRACT

Activated platelets and platelet-derived extracellular vesicles (EVs) have emerged as central players in thromboembolic complications associated with severe coronavirus disease 2019 (COVID-19). Platelets bridge hemostatic, inflammatory, and immune responses by their ability to sense pathogens via various pattern recognition receptors, and they respond to infection through a diverse repertoire of mechanisms. Dysregulated platelet activation, however, can lead to immunothrombosis, a simultaneous overactivation of blood coagulation and the innate immune response. Mediators released by activated platelets in response to infection, such as antimicrobial peptides, high mobility group box 1 protein, platelet factor 4 (PF4), and PF4+ extracellular vesicles promote neutrophil activation, resulting in the release of neutrophil extracellular traps and histones. Many of the factors released during platelet and neutrophil activation are positively charged and interact with endogenous heparan sulfate or exogenously administered heparin via electrostatic interactions or via specific binding sites. Here, we review the current state of knowledge regarding the involvement of platelets and platelet-derived EVs in the pathogenesis of immunothrombosis, and we discuss the potential of extracorporeal therapies using adsorbents functionalized with heparin to deplete platelet-derived and neutrophil-derived mediators of immunothrombosis.

12.
Expert Opin Biol Ther ; 22(6): 747-762, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1956518

ABSTRACT

INTRODUCTION: Extracellular vesicles (EV) released constitutively or following external stimuli from structural and immune cells are now recognized as important mediators of cell-to-cell communication. They are involved in the pathogenesis of pneumonia and sepsis, leading causes of acute respiratory distress syndrome (ARDS) where mortality rates remain up to 40%. Multiple investigators have demonstrated that one of the underlying mechanisms of the effects of EVs is through the transfer of EV content to host cells, resulting in apoptosis, inflammation, and permeability in target organs. AREAS COVERED: The current review focuses on preclinical research examining the role of EVs released into the plasma and injured alveolus during pneumonia and sepsis. EXPERT OPINION: Inflammation is associated with elevated levels of circulating EVs that are released by activated structural and immune cells and can have significant proinflammatory, procoagulant, and pro-permeability effects in critically ill patients with pneumonia and/or sepsis. However, clinical translation of the use of EVs as biomarkers or potential therapeutic targets may be limited by current methodologies used to identify and quantify EVs accurately (whether from host cells or infecting organisms) and lack of understanding of the role of EVs in the reparative phase during recovery from pneumonia and/or sepsis.


Subject(s)
Extracellular Vesicles , Pneumonia , Respiratory Distress Syndrome , Sepsis , Humans , Inflammation/pathology
13.
Front Genet ; 13: 893141, 2022.
Article in English | MEDLINE | ID: covidwho-1952310

ABSTRACT

Our previous paper showed that microRNAs (miRNAs) present within human placental or mesenchymal stem cell-derived extracellular vesicles (EVs) directly interacted with the RNA genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), inhibiting viral replication. In this paper, we analyzed whether these miRNAs could exert antiviral activity against other variants of SARS-CoV-2. We downloaded compete SARS-CoV-2 genome data submitted to the National Center for Biotechnology Information for each SARS-CoV-2 variant, aligned the data to the reference SARS-CoV-2 genome sequence, and then confirmed the presence of 3' untranslated region (UTR) mutations. We identified one type of 3' UTR mutation in the Alpha variant, four in the Beta variant, four in the Gamma variant, three in the Delta variant, and none in the Omicron variant. Our findings indicate that 3' UTR mutations rarely occur as persistent mutations. Interestingly, we further confirmed that this phenomenon could suppress virus replication in the same manner as the previously discovered interaction of placental-EV-derived miRNA with 3' UTRs of SARS-CoV-2. Because the 3' UTR of the SARS-CoV-2 RNA genome has almost no mutations, it is expected to be an effective therapeutic target regardless of future variants. Thus, a therapeutic strategy targeting the 3' UTR of SARS-CoV-2 is likely to be extremely valuable, and such an approach is also expected to be applied to all RNA-based virus therapeutics.

14.
Front Cell Infect Microbiol ; 12: 850744, 2022.
Article in English | MEDLINE | ID: covidwho-1952256

ABSTRACT

The endemic and pandemic caused by respiratory virus infection are a major cause of mortality and morbidity globally. Thus, broadly effective antiviral drugs are needed to treat respiratory viral diseases. Small extracellular vesicles derived from human umbilical cord mesenchymal stem cells (U-exo) have recently gained attention as a cell-free therapeutic strategy due to their potential for safety and efficacy. Anti-viral activities of U-exo to countermeasure respiratory virus-associated diseases are currently unknown. Here, we tested the antiviral activities of U-exo following influenza A/B virus (IFV) and human seasonal coronavirus (HCoV) infections in vitro. Cells were subject to IFV or HCoV infection followed by U-exo treatment. U-exo treatment significantly reduced IFV or HCoV replication and combined treatment with recombinant human interferon-alpha protein (IFN-α) exerted synergistically enhanced antiviral effects against IFV or HCoV. Interestingly, microRNA (miR)-125b, which is one of the most abundantly expressed small RNAs in U-exo, was found to suppress IFV replication possibly via the induction of IFN-stimulated genes (ISGs). Furthermore, U-exo markedly enhanced RNA virus-triggered IFN signaling and ISGs production. Similarly, human nasal epithelial cells cultured at the air-liquid interface (ALI) studies broadly effective anti-viral and anti-inflammatory activities of U-exo against IFV and HCoV, suggesting the potential role of U-exo as a promising intervention for respiratory virus-associated diseases.


Subject(s)
Coronavirus , Exosomes , Extracellular Vesicles , Mesenchymal Stem Cells , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Humans , Mesenchymal Stem Cells/metabolism , Umbilical Cord
15.
INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES ; 11(2):110-119, 2022.
Article in English | Web of Science | ID: covidwho-1939780

ABSTRACT

Microparticles (MPs) are vesicles of less than 1 mu m in diameter (submicron vesicles) shed from plasma membranes to cell activation, injury, and apoptosis response. They consisted of membrane proteins and cytosolic material from the cell they originated. These vesicles are vital mediators of pathological and physiological cellular processes. Polycystic ovary syndrome (PCOS) is a regular endocrine, menstrual and metabolic condition that affects 10-15% of females in their reproductive period. Numerous researches have described the association between low-grade chronic inflammation and PCOS;however, the relation is not well understood. Chronic lowgrade inflammation is reflected as a risk factor for cardiovascular disease, atherosclerosis, and endothelial dysfunction, and it is linked to abdominal obesity and insulin resistance (IR). MPs may be useful biomarkers for the early detection of cardiovascular disease and thrombosis in PCOS patients. In March 2020, the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) became pandemic, wreaking havoc on healthcare systems worldwide and the global economy. Obesity, diabetes, and cardiovascular disease have all been linked to COVID-19 increased risk of infection. PCOS patients have recently been identified as an underserved and potentially high-risk demographic for COVID-19 problems. This article tried to review and present recent studies that explored the role of microparticles in polycystic ovarian syndrome.

16.
Front Pharmacol ; 13: 877422, 2022.
Article in English | MEDLINE | ID: covidwho-1933743

ABSTRACT

The coronavirus disease (COVID-19) is responsible for more than 5 million deaths worldwide, with respiratory failure being the most common clinical presentation. COVID-19 complications still present a considerable burden on healthcare systems, and signs of the post-COVID syndrome are concerns for potential long-term damages. An increasing body of evidence highlights extracellular vesicles' (EVs) relevance in modulating inflammation and cell death in the diseases related to these processes. Several types of EVs-based investigational new drugs against COVID-19 have been approved by the US Food and Drug Administration to initiate a Phase I/II trial under an Investigational New Drug protocol. EVs can be employed as natural drug delivery nanoparticle-based systems due to their inherent potential in transferring material between cells, their natural origin, and their capability to encapsulate various biological molecules, offering an exciting alternative for administering drugs acting on the cell cycle control. In this context, small-molecule inhibitors of Mouse Double Minute 2 (MDM2) such as Nutlin-3 and Idasanutlin by promoting p53 survival and its antiviral activity might be helpful to modulate the IFN signalling pathway and reduce the overall pro-inflammatory burden.

17.
Vaccines (Basel) ; 10(7)2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1917870

ABSTRACT

We propose an innovative anti-SARS-CoV-2 immune strategy based on extracellular vesicles (EVs) inducing an anti-SARS-CoV-2 N CD8+ T cytotoxic lymphocyte (CTL) immune response. We previously reported that the SARS-CoV-2 N protein can be uploaded at high levels in EVs upon fusion with Nefmut, i.e., a biologically inactive HIV-1 Nef mutant incorporating into EVs at quite high levels. Here, we analyze the immunogenic properties in human cells of EVs engineered with SARS-CoV-2 N fused at the C-terminus of either Nefmut or a deletion mutant of Nefmut referred to as NefmutPL. The analysis of in vitro-produced EVs has supported the uploading of N protein when fused with truncated Nefmut. Mice injected with DNA vectors expressed each fusion protein developed robust SARS-CoV-2 N-specific CD8+ T cell immune responses. When ex vivo human dendritic cells were challenged with EVs engineered with either fusion products, the induction of a robust N-specific CTL activity, as evaluated by both CD107a and trogocytosis assays, was observed. Through these data we achieved the proof-of-principle that engineered EVs can be instrumental to elicit anti-SARS-CoV-2 CTL immune response in human cells. This achievement represents a mandatory step towards the upcoming experimentations in pre-clinical models focused on intranasal administration of N-engineered EVs.

18.
Stem Cells Transl Med ; 11(7): 675-687, 2022 Jul 20.
Article in English | MEDLINE | ID: covidwho-1908958

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSCs) may reduce mortality in patients with COVID-19; however, early evidence is based on few studies with marked interstudy heterogeneity. The second iteration of our living systematic review and meta-analysis evaluates a framework needed for synthesizing evidence from high-quality studies to accelerate consideration for approval. METHODS: A systematic search of the literature was conducted on November 15, 2021, to identify all English-language, full-text, and controlled clinical studies examining MSCs to treat COVID-19 (PROSPERO: CRD42021225431). FINDINGS: Eleven studies were identified (403 patients with severe and/or critical COVID-19, including 207 given MSCs and 196 controls). All 11 studies reported mortality and were pooled through random-effects meta-analysis. MSCs decreased relative risk of death at study endpoint (RR: 0.50 [95% CI, 0.34-0.75]) and RR of death at 28 days after treatment (0.19 [95% CI], 0.05-0.78) compared to controls. MSCs also decreased length of hospital stay (mean difference (MD: -3.97 days [95% CI, -6.09 to -1.85], n = 5 studies) and increased oxygenation levels at study endpoint compared to controls (MD: 105.62 mmHg O2 [95% CI, 73.9-137.3,], n = 3 studies). Only 2 of 11 studies reported on all International Society for Cellular Therapy (ISCT) criteria for MSC characterization. Included randomized controlled trials were found to have some concerns (n = 2) to low (n = 4) risk of bias (RoB), while all non-randomized studies were found to have moderate (n = 5) RoB. INTERPRETATION: Our updated living systematic review concludes that MSCs can likely reduce mortality in patients with severe or critical COVID-19. A master protocol based on our Faster Approval framework appears necessary to facilitate the more accelerated accumulation of high-quality evidence that would reduce RoB, improve consistency in product characterization, and standardize outcome reporting.


Subject(s)
COVID-19 , Mesenchymal Stem Cells , Bias , COVID-19/therapy , Humans , Lung , Randomized Controlled Trials as Topic
19.
Immunol Rev ; 2022 Jun 16.
Article in English | MEDLINE | ID: covidwho-1895985

ABSTRACT

Tissue factor (TF) is a procoagulant protein released from activated host cells, such as monocytes, and tumor cells on extracellular vesicles (EVs). TF + EVs are observed in the circulation of patients with various types of diseases. In this review, we will summarize the association between TF + EVs and activation of coagulation and survival in different types of diseases, including cancer, sepsis, and infections with different viruses, such as human immunodeficiency virus (HIV), influenza A virus (IAV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We will also discuss the source of TF + EVs in various diseases. EVTF activity is associated with thrombosis in pancreatic cancer patients and coronavirus disease 2019 patients (COVID-19) and with disseminated intravascular coagulation in cancer patients. EVTF activity is also associated with worse survival in patients with cancer and COVID-19. Monocytes are the major sources of TF + EVs in sepsis, and viral infections, such as HIV, Ebola virus, and SARS-CoV-2. In contrast, alveolar epithelial cells are the major source of TF + EVs in bronchoalveolar lavage fluid in COVID-19 and influenza A patients. These studies indicate that EVTF activity could be used as a biomarker to identify patients that have an increased risk of coagulopathy and mortality.

20.
Extracellular Vesicle ; : 100002, 2022.
Article in English | ScienceDirect | ID: covidwho-1895487

ABSTRACT

Respiratory diseases are among the leading causes of morbidity and mortality worldwide, coupled with the ongoing coronavirus disease 2019 (COVID-19) pandemic. mRNA lipid nanoparticle (LNP) vaccines have been developed, but their intramuscular delivery limits pulmonary bioavailability. Inhalation of nanoparticle therapeutics offers localized drug delivery that minimizes off targeted adverse effects and has greater patient compliance. However, LNP platforms require extensive reformulation for inhaled delivery. Lung-derived extracellular vesicles (Lung-Exo) offer a biological nanoparticle alternative that is naturally optimized for mRNA translation and delivery to pulmonary cells. We compared the biodistribution of Lung-Exo against commercially standard biological extracellular vesicles (HEK-Exo) and LNPs (Lipo), where Lung-Exo exhibited superior mRNA and protein cargo distribution to and retention in the bronchioles and parenchyma following nebulization administration. This suggests that inhaled Lung-Exo can deliver mRNA and protein drugs with enhanced pulmonary bioavailability and therapeutic efficacy.

SELECTION OF CITATIONS
SEARCH DETAIL