Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Ther Adv Infect Dis ; 9: 20499361221102664, 2022.
Article in English | MEDLINE | ID: covidwho-2239483

ABSTRACT

The COVID-19 pandemic has shed light on the challenges we face as a global society in preventing and containing emerging and re-emerging pathogens. Multiple intersecting factors, including environmental changes, host immunological factors, and pathogen dynamics, are intimately connected to the emergence and re-emergence of communicable diseases. There is a large and expanding list of communicable diseases that can cause neurological damage, either through direct or indirect routes. Novel pathogens of neurotropic potential have been identified through advanced diagnostic techniques, including metagenomic next-generation sequencing, but there are also known pathogens which have expanded their geographic distribution to infect non-immune individuals. Factors including population growth, climate change, the increase in animal and human interface, and an increase in international travel and trade are contributing to the expansion of emerging and re-emerging pathogens. Challenges exist around antimicrobial misuse giving rise to antimicrobial-resistant infectious neurotropic organisms and increased susceptibility to infection related to the expanded use of immunomodulatory treatments. In this article, we will review key concepts around emerging and re-emerging pathogens and discuss factors associated with neurotropism and neuroinvasion. We highlight several neurotropic pathogens of interest, including West Nile virus (WNV), Zika Virus, Japanese Encephalitis Virus (JEV), and Tick-Borne Encephalitis Virus (TBEV). We emphasize neuroinfectious diseases which impact the central nervous system (CNS) and focus on flaviviruses, a group of vector-borne pathogens that have expanded globally in recent years and have proven capable of widespread outbreak.

2.
Viruses ; 15(1)2022 Dec 29.
Article in English | MEDLINE | ID: covidwho-2234767

ABSTRACT

Following the cause established twenty-two years ago, the 22nd Annual Rocky Mountain Virology Association meeting was held amidst the resplendent Rocky Mountains within the Arapahoe and Roosevelt National Forests. 116 intellectuals including both regional and international scientists as well as trainees gathered at the Colorado State University Mountain Campus for this three-day forum. Current trends in virology and prion disease research were discussed both in talks and poster presentations. This year's keynote address emphasized innate immune modulation by arboviruses while other invited speakers shared updates on noroviruses, retroviruses, coronaviruses and prion diversity. Additionally, the need for and importance of better approaches for sharing science with non-science communities via science communication was discussed. Trainees and junior investigators presented 19 talks and 31 posters. This report encapsulates selected studies presented at the 22nd Rocky Mountain National Virology Association meeting held on 30 September-2 October 2022.


Subject(s)
Congresses as Topic , Virology , Humans , Colorado , Prions , Retroviridae
3.
Ann N Y Acad Sci ; 1521(1): 46-66, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2228475

ABSTRACT

Positive-strand RNA viruses have been the cause of several recent outbreaks and epidemics, including the Zika virus epidemic in 2015, the SARS outbreak in 2003, and the ongoing SARS-CoV-2 pandemic. On June 18-22, 2022, researchers focusing on positive-strand RNA viruses met for the Keystone Symposium "Positive-Strand RNA Viruses" to share the latest research in molecular and cell biology, virology, immunology, vaccinology, and antiviral drug development. This report presents concise summaries of the scientific discussions at the symposium.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Humans , SARS-CoV-2 , Positive-Strand RNA Viruses , Antiviral Agents/therapeutic use , Pandemics , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Zika Virus Infection/drug therapy
4.
Annual Reports in Medicinal Chemistry ; 58:ix-x, 2022.
Article in English | EMBASE | ID: covidwho-2221499
5.
Cellular Signalling ; 102, 2023.
Article in English | Web of Science | ID: covidwho-2220515
6.
Ann N Y Acad Sci ; 1521(1): 46-66, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2213787

ABSTRACT

Positive-strand RNA viruses have been the cause of several recent outbreaks and epidemics, including the Zika virus epidemic in 2015, the SARS outbreak in 2003, and the ongoing SARS-CoV-2 pandemic. On June 18-22, 2022, researchers focusing on positive-strand RNA viruses met for the Keystone Symposium "Positive-Strand RNA Viruses" to share the latest research in molecular and cell biology, virology, immunology, vaccinology, and antiviral drug development. This report presents concise summaries of the scientific discussions at the symposium.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Humans , SARS-CoV-2 , Positive-Strand RNA Viruses , Antiviral Agents/therapeutic use , Pandemics , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Zika Virus Infection/drug therapy
7.
Cellular Signalling ; : 110558, 2022.
Article in English | ScienceDirect | ID: covidwho-2149446
8.
Vaccine ; 40(49):7022-7031, 2022.
Article in English | ProQuest Central | ID: covidwho-2119102
9.
Disease Surveillance ; 37(6):716-719, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-2055480
10.
Transboundary & Emerging Diseases ; 69(5):e3393-e3399, 2022.
Article in English | Academic Search Complete | ID: covidwho-2053038
12.
Chinese Veterinary Science / Zhongguo Shouyi Kexue ; 50(11):1373-1378, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-2040499
13.
PLoS Global Public Health ; 2(8), 2022.
Article in English | CAB Abstracts | ID: covidwho-2039228
14.
Lancet Infectious Diseases ; 22(6):762-763, 2022.
Article in English | CAB Abstracts | ID: covidwho-2034525
15.
Boletin de Malariologia y Salud Ambiental ; 61(2):157-165, 2021.
Article in Spanish | CAB Abstracts | ID: covidwho-2034280
16.
Jurnal Berkala Epidemiologi / Periodic Epidemiology Journal ; 10(2):169-178, 2022.
Article in English | CAB Abstracts | ID: covidwho-2026041
17.
Pan African Medical Journal ; 41(25), 2022.
Article in English | CAB Abstracts | ID: covidwho-2025477
18.
PLoS Climate ; 1(3), 2022.
Article in English | CAB Abstracts | ID: covidwho-2021470
19.
BMC Public Health ; 22(1644), 2022.
Article in English | CAB Abstracts | ID: covidwho-2021264
20.
Microbiol Spectr ; 10(5): e0298922, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2008769

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne flavivirus that emerged in the Pacific islands in 2007 and spread to the Americas in 2015. The infection remains asymptomatic in most cases but can be associated with severe neurological disorders. Despite massive efforts, no specific drug or vaccine against ZIKV infection is available to date. Claudins are tight-junction proteins that favor the entry of several flaviviruses, including ZIKV. In this study, we identified two peptides derived from the N-terminal sequences of claudin-7 and claudin-1, named CL7.1 and CL1.1, respectively, that inhibited ZIKV infection in a panel of human cell lines. Using cell-to-cell fusion assays, we demonstrated that these peptides blocked the ZIKV E-mediated membrane fusion. A comparison of the antiviral efficacy of CL1.1 and CL7.1 pointed to the importance of the peptide amphipathicity. Electron microscopic analysis revealed that CL1.1 altered the ultrastructure of the viral particles likely by binding the virus lipid envelope. However, amphipathicity could not fully explain the antiviral activity of CL1.1. In silico docking simulations suggested that CL1.1 may also interact with the E protein, near its stem region. Overall, our data suggested that claudin-derived peptides inhibition may be linked to simultaneous interaction with the E protein and the viral lipid envelope. Finally, we found that CL1.1 also blocked infection by yellow fever and Japanese encephalitis viruses but not by HIV-1 or SARS-CoV-2. Our results provide a basis for the future development of therapeutics against a wide range of endemic and emerging flaviviruses. IMPORTANCE Zika virus (ZIKV) is a flavivirus transmitted by mosquito bites that have spread to the Pacific Islands and the Americas over the past decade. The infection remains asymptomatic in most cases but can cause severe neurological disorders. ZIKV is a major public health threat in areas of endemicity, and there is currently no specific antiviral drug or vaccine available. We identified two antiviral peptides deriving from the N-terminal sequences of claudin-7 and claudin-1 with the latter being the most effective. These peptides block the envelope-mediated membrane fusion. Our data suggested that the inhibition was likely achieved by simultaneously interacting with the viral lipid envelope and the E protein. The peptides also inhibited other flaviviruses. These results could provide the basis for the development of therapies that might target a wide array of flaviviruses from current epidemics and possibly future emergences.


Subject(s)
Claudins , Membrane Fusion , Zika Virus Infection , Zika Virus , Humans , Antiviral Agents/pharmacology , Claudin-1 , Lipids , Peptides/pharmacology , Zika Virus Infection/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL