Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Infect Dis Health ; 2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-1996209

ABSTRACT

BACKGROUNDS: In 2022, smartphone use continues to expand with the number of smartphone subscriptions surpassing 6 billion and forecasted to grow to 7.5 billion by 2026. The necessity of these 'high touch' devices as essential tools in professional healthcare settings carries great risks of cross-contamination between mobile phones and hands. Current research emphasises mobile phones as fomites enhancing the risk of nosocomial disease dissemination as phone sanitisation is often overlooked. To assess and report via a large-scale E-survey the handling practices and the use of phones by healthcare workers. METHODS: A total of 377 healthcare workers (HCWs) participated in this study to fill in an E-survey online consisting of 14 questions (including categorical, ordinal, and numerical data). Analysis of categorical data used non-parametric techniques such as Pearson's chi-squared test. RESULTS: During an 8-h shift, 92.8% (n/N = 350/377) use their phone at work with 84.6% (n/N = 319/377) considering mobile phones as an essential tool for their job. Almost all HCWs who participated in this survey believe their mobile phones could potentially harbour microorganisms (97.1%; n/N = 366/377). Fifty-seven respondents (15.1%) indicated that they use their phones while wearing gloves and 10.3% (n/N = 39/377) have never cleaned their phones. The majority of respondents (89.3%; n/N = 337/377) agreed that contaminated mobile phones could contribute to dissemination of SARS-CoV-2. CONCLUSION: Mobile phone use is now almost universal and indispensable in healthcare. Medical staff believe mobile phones can act as fomites with a potential risk for dissemination of microbes including SARS-COV-2. There is an urgent call for the incorporation of mobile phone sanitisation in infection prevention protocol. Studies on the use of ultraviolet-C based phone sanitation devices in health care settings are needed.

2.
Pathogens ; 11(6)2022 Jun 17.
Article in English | MEDLINE | ID: covidwho-1987911

ABSTRACT

There is a paucity of data regarding the differentiating characteristics of patients who were infected with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by fomites around the world. We conducted an event-based outbreak investigation, involving 795 public officers and 277 assistant staff, in the Ministry of Oceans and Fisheries (MOF) or the same building from March 2 to March 18, 2020. The SARS-CoV-2 patients were found to have more frequently touched fomites and used public toilets than those who were tested negative for the virus (cOR, 24.38; 95% CI, 4.95-120.01). Symptoms such as coughing and loss of taste and smell were more frequently found in the office-cleaner group than in the public-officer group. The SARS-CoV-2 office-cleaner patients were more likely to have a high RdRp(Ct) value of PCR (median: 34.17 vs. 24.99; p = 0.035) and E(Ct) value of PCR (median: 32.30 vs. 24.74; p = 0.045). All office cleaner patients (100%) had a ground glass opacity in both lobes. Regarding segmental lung involvement of CT, two patients (100%) had a lesion in the right middle lobe, which invaded the whole lobe later. This implies that the fomite might be a selective risk factor of SARS-CoV-2 infection.

3.
Heliyon ; 8(8): e10280, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1983120

ABSTRACT

Due to the immense societal and economic impact that the COVID-19 pandemic has caused, limiting the spread of SARS-CoV-2 is one of the most important priorities at this time. The global interconnectedness of the food industry makes it one of the biggest concerns for SARS-CoV-2 outbreaks. Although fomites are currently considered a low-risk route of transmission for SARS-CoV-2, new variants of the virus can potentially alter the transmission dynamics. In this study, we compared the survival rate of pseudotyped SARS-CoV-2 on plastic with some commonly used food samples (i.e., apple, strawberry, grapes, tomato, cucumber, lettuce, parsley, Brazil nut, almond, cashew, and hazelnut). The porosity level and the chemical composition of different food products affect the virus's stability and infectivity. Our results showed that tomato, cucumber, and apple offer a higher survival rate for the pseudotyped viruses. Next, we explored the effectiveness of ozone in deactivating the SARS-CoV-2 pseudotyped virus on the surface of tomato, cucumber, and apple. We found that the virus was effectively inactivated after being exposed to 15 ppm of ozone for 1 h under ambient conditions. SEM imaging revealed that while ozone exposure altered the wax layer on the surface of produce, it did not seem to damage the cells and their biological structures. The results of our study indicate that ozonated air can likely provide a convenient method of effectively disinfecting bulk food shipments that may harbour the SARS-CoV-2 virus.

4.
Appl Environ Microbiol ; 88(14): e0076422, 2022 Jul 26.
Article in English | MEDLINE | ID: covidwho-1962070

ABSTRACT

Most studies on surface persistence of SARS-CoV-2 have been conducted at temperatures between 20°C and 30°C. There is limited data on the survival of SARS-CoV-2 at low temperatures. In this study, the stability of SARS-CoV-2 Alpha and Delta variants on stainless steel was investigated at two temperatures (4°C and 24°C). The results show that both variants decayed more rapidly at 24°C compared with 4°C. At 24°C, Alpha and Delta variants showed reductions of 0.33 log10 and 1.02 log10, respectively, within the first 2.5 h. However, at 4°C, Alpha variant showed a reduction of 0.16 log10 within the first 2.5 h while no reduction was observed with Delta variant. After remaining in situ for 24 h at 24°C, log10 reductions of 2.66 (Alpha) and 3.11 (Delta) were observed. No viable Alpha and Delta variant was recovered after 48 h and 72 h, respectively. After 24 h in a refrigerated environment (4°C) log10 reductions of 1.16 (Alpha) and 0.95 (Delta) were observed. Under these experimental conditions, both viruses survived on stainless steel for at least 1 week. No viable Alpha and Delta variant was recovered after 10 days. These findings support the potential for increased fomite transmission of SARS-CoV-2 during winter months in colder regions worldwide and in some industrial sectors. IMPORTANCE Human transmission is believed to occur primarily through direct transfer of infectious droplets or aerosols. However, fomite transmission through contact with contaminated surfaces may also play an important role. This study provides novel evidence comparing the stability of Alpha and Delta variants on stainless steel surfaces at 4°C and 24°C. At 4°C both variants were found to be still detectable for up to 7 days. At 24°C Delta variant could be recovered over 2 days compared with Alpha variant which could not be recovered after 2 days. This has implications for fomite transmission interventions for people living and working in cold environments.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Stainless Steel , Temperature
5.
IOP Conference Series. Earth and Environmental Science ; 1032(1):012029, 2022.
Article in English | ProQuest Central | ID: covidwho-1922158

ABSTRACT

A pandemic like novel coronavirus 2’ (SARS-CoV-2) not only poses serious public health repercussions but also affects the socio-economic and environmental conditions of the affected countries. The increased consumption of material resources in conjunction with ‘containment and preventive measures’ is generating an unprecedented amount of potentially infectious solid waste, especially that of plastic origin, which if mismanaged, is bound to affect the ecosystem and public health, as the virus can survive on fomites for longer duration. COVID-19 related pandemic waste, such as Personal protective equipment (PPEs), sanitizer and water bottles, disinfection wipes, and Single use Plastics (SUPs) products has already found its way to the aquatic and terrestrial environment. Even before the start of the COVID-19 pandemic, the management of plastic waste, an environmental stressor with trans-boundary migration capabilities, was a major environmental issue for every stake-holder.In this paper, we propose a separate domain in the waste management framework for the effective management of pandemic related solid waste. Factors and sources contributing to increased plastic waste generation are discussed in detail. A concise picture of global plastic demand through sectors and polymer types is presented and speculations are made on how COVID-19 is going to affect the plastic demand. Current solid waste handling and management practices in developed and developing countries are critically examined from the perspective of this pandemic. We identified various challenges that waste management sectors are facing currently and offered possible solutions.Concerns of transmission through fomites is bringing a change in public behavior and consumption pattern which affects 3R practices, while fear of secondary transmission from occupational infections is interfering with 3R practices at end-of-life plastic waste management. The legislative and restrictive frameworks on plastic use being currently put-on hold at the governmental level to ensure public safety are being used by the plastic industry to lobby for increased plastic consumption. The inability of the governments to win public confidence is further escalating unsustainable practices and slowing the shift towards sustainable economy. It is imperative to enforce sustainable practices without putting public safety at risk and to ensure that an unsustainable societal attitude wouldn’t be reinstated in the post-pandemic world. Lastly, eight research and policy points suggested here may guide future studies and governmental frameworks in the domain of COVID-19 pandemic related solid waste handling and management.

6.
Int J Environ Res Public Health ; 19(12)2022 06 13.
Article in English | MEDLINE | ID: covidwho-1911314

ABSTRACT

The COVID-19 pandemic has resulted in high demand for disinfection technologies. However, the corresponding spray technologies are still not completely optimized for disinfection purposes. There are important problems, like the irregular coverage and dripping of disinfectant solutions on hard and vertical surfaces. In this study, we highlight two major points. Firstly, we discuss the effectiveness of the electrostatic spray deposition (ESD) of nanoparticle-based disinfectant solutions for systematic and long-lasting disinfection. Secondly, we show that, based on the type of material of the substrate, the effectiveness of ESD varies. Accordingly, 12 frequently touched surface materials were sprayed using a range of electrostatic spray system parameters, including ion generator voltage, nozzle spray size and distance of spray. It was observed that for most cases, the surfaces become completely covered with the nanoparticles within 10 s. Acrylic, Teflon, PVC, and polypropylene surfaces show a distinct effect of ESD and non-ESD sprays. The nanoparticles form a uniform layer with better surface coverage in case of electrostatic deposition. Quantitative variations and correlations show that 1.5 feet of working distance, an 80 µm spray nozzle diameter and an ion generator voltage of 3-7 kV ensures a DEF (differential electric field) that corresponds to an optimized charge-to-mass ratio, ensuring efficient coverage of nanoparticles.


Subject(s)
COVID-19 , Disinfectants , COVID-19/prevention & control , Disinfection/methods , Humans , Pandemics/prevention & control , Static Electricity
7.
Int J Environ Res Public Health ; 19(10)2022 05 11.
Article in English | MEDLINE | ID: covidwho-1847333

ABSTRACT

The SARS-CoV-2 can spread directly via saliva, respiratory aerosols and droplets, and indirectly by contact through contaminated objects and/or surfaces and by air. In the context of COVID-19 fomites can be an important vehicle of virus transmission and contribute to infection risk in public environments. The aim of the study was to analyze through surface sampling (sponge method) the presence of SARS-CoV-2 in public and working environments, in order to evaluate the risk for virus transmission. Seventy-seven environmental samples were taken using sterile sponges in 17 animal farms, 4 public transport buses, 1 supermarket and 1 hotel receptive structure. Furthermore, 246 and 93 swab samples were taken in the farms from animals and from workers, respectively. SARS-CoV-2 detection was conducted by real-time RT-PCR and by digital droplet RT-PCR (dd RT-PCR) using RdRp, gene E and gene N as targets. None of the human and animal swab samples were positive for SARS-CoV-2, while detection was achieved in 20 of the 77 sponge samples (26%) using dd RT-PCR. Traces of the RdRp gene, gene E and gene N were found in 17/77 samples (22%, average concentration 31.2 g.c./cm2, range 5.6 to 132 g.c./cm2), 8/77 samples (10%, average concentration 15.1 g.c./cm2, range 6 to 36 g.c./cm2), and in 1/77 (1%, concentration 7.2 g.c./cm2). Higher detection rates were associated with sampling in animal farms and on public transport buses (32% and 30%) compared to the supermarket (21%) and the hotel (no detection). The result of the study suggests that the risk of contamination of surfaces with SARS-CoV-2 increases in environments in which sanitation strategies are not suitable and/or in highly frequented locations, such as public transportation. Considering the analytical methods, the dd RT-PCR was the only approach achieving detection of SARS-CoV-2 traces in environmental samples. Thus, dd RT-PCR emerges as a reliable tool for sensitive SARS-CoV-2 detection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/diagnosis , COVID-19/epidemiology , RNA, Viral/analysis , RNA, Viral/genetics , RNA-Dependent RNA Polymerase , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics
8.
J Expo Sci Environ Epidemiol ; 32(5): 751-758, 2022 09.
Article in English | MEDLINE | ID: covidwho-1815512

ABSTRACT

BACKGROUND: Evidence is needed on the presence of SARS-CoV-2 in various types of environmental samples and on the estimated transmission risks in non-healthcare settings on campus. OBJECTIVES: The objective of this research was to collect data on SARS-CoV-2 viral load and to examine potential infection risks of people exposed to the virus in publicly accessible non-healthcare environments on a university campus. METHODS: Air and surface samples were collected using wetted wall cyclone bioaerosol samplers and swab kits, respectively, in a longitudinal environmental surveillance program from August 2020 until April 2021 on the University of Michigan Ann Arbor campus. Quantitative rRT-PCR with primers and probes targeting gene N1 were used for SARS-CoV-2 RNA quantification. The RNA concentrations were used to estimate the probability of infection by quantitative microbial risk assessment modeling and Monte-Carlo simulation. RESULTS: In total, 256 air samples and 517 surface samples were collected during the study period, among which positive rates were 1.6% and 1.4%, respectively. Point-biserial correlation showed that the total case number on campus was significantly higher in weeks with positive environmental samples than in non-positive weeks (p = 0.001). The estimated probability of infection was about 1 per 100 exposures to SARS-CoV-2-laden aerosols through inhalation and as high as 1 per 100,000 exposures from contacting contaminated surfaces in simulated scenarios. SIGNIFICANCE: Viral shedding was demonstrated by the detection of viral RNA in multiple air and surface samples on a university campus. The low overall positivity rate indicated that the risk of exposure to SARS-CoV-2 at monitored locations was low. Risk modeling results suggest that inhalation is the predominant route of exposure compared to surface contact, which emphasizes the importance of protecting individuals from airborne transmission of SARS-CoV-2 and potentially other respiratory infectious diseases. IMPACT: Given the reoccurring epidemics caused by highly infectious respiratory viruses in recent years, our manuscript reinforces the importance of monitoring environmental transmission by the simultaneous sampling and integration of multiple environmental surveillance matrices for modeling and risk assessment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Motor Vehicles , RNA, Viral/analysis , Respiratory Aerosols and Droplets , Universities
9.
Front Microbiol ; 13: 847313, 2022.
Article in English | MEDLINE | ID: covidwho-1785372

ABSTRACT

High-touch environmental surfaces are acknowledged as potential sources of pathogen transmission, particularly in health care settings where infectious agents may be readily abundant. Methods of disinfecting these surfaces often include direct application of a chemical disinfectant or simply wiping the surface with a disinfectant pre-soaked wipe (DPW). In this study, we examine the ability of four disinfectants, ethanol (EtOH), sodium hypochlorite (NaOCl), chlorine dioxide (ClO2), and potassium monopersulfate (KMPS), to inactivate SARS-CoV-2 on a hard, non-porous surface, assessing the effects of concentration and contact time. The efficacy of DPWs to decontaminate carriers spiked with SARS-CoV-2, as well as the transferability of the virus from used DPWs to clean surfaces, is also assessed. Stainless steel carriers inoculated with approximately 6 logs of SARS-CoV-2 prepared in a soil load were disinfected within 5 min through exposure to 66.5% EtOH, 0.5% NaOCl, and 1% KMPS. The addition of mechanical wiping using DPWs impregnated with these biocides rendered the virus inactive almost immediately, with no viral transfer from the used DPW to adjacent surfaces. Carriers treated with 100 ppm of ClO2 showed a significant amount of viable virus remaining after 10 min of biocide exposure, while the virus was only completely inactivated after 10 min of treatment with 500 ppm of ClO2. Wiping SARS-CoV-2-spiked carriers with DPWs containing either concentration of ClO2 for 5 s left significant amounts of viable virus on the carriers. Furthermore, higher titers of infectious virus retained on the ClO2-infused DPWs were transferred to uninoculated carriers immediately after wiping. Overall, 66.5% EtOH, 0.5% NaOCl, and 1% KMPS appear to be highly effective biocidal agents against SARS-CoV-2, while ClO2 formulations are much less efficacious.

10.
Front Cell Infect Microbiol ; 12: 806077, 2022.
Article in English | MEDLINE | ID: covidwho-1775644

ABSTRACT

Background: Mobile phones of healthcare workers (HCWs) can act as fomites in the dissemination of microbes. This study was carried out to investigate microbial contamination of mobile phones of HCWs and environmental samples from the hospital unit using a combination of phenotypic and molecular methods. Methods: This point prevalence survey was carried out at the Emergency unit of a tertiary care facility. The emergency unit has two zones, a general zone for non-COVID-19 patients and a dedicated COVID-19 zone for confirmed or suspected COVID-19 patients. Swabs were obtained from the mobile phones of HCWs in both zones for bacterial culture and shotgun metagenomic analysis. Metagenomic sequencing of pooled environmental swabs was conducted. RT-PCR for SARS-CoV-2 detection was carried out. Results: Bacteria contamination on culture was detected from 33 (94.2%) mobile phones with a preponderance of Staphylococcus epidermidis (n/N = 18/35), Staphylococcus hominis (n/N = 13/35), and Staphylococcus haemolyticus (n/N = 7/35). Two methicillin-sensitive and three methicillin-resistant Staphylococcus aureus, and one pan-drug-resistant carbapenemase producer Acinetobacter baumannii were detected. Shotgun metagenomic analysis showed high signature of Pseudomonas aeruginosa in mobile phone and environmental samples with preponderance of P. aeruginosa bacteriophages. Malassezia and Aspergillus spp. were the predominant fungi detected. Fourteen mobile phones and one environmental sample harbored protists. P. aeruginosa antimicrobial resistance genes mostly encoding for efflux pump systems were detected. The P. aeruginosa virulent factor genes detected were related to motility, adherence, aggregation, and biofilms. One mobile phone from the COVID-19 zone (n/N = 1/5; 20%) had positive SARS-CoV-2 detection while all other phone and environmental samples were negative. Conclusion: The findings demonstrate that mobile phones of HCWs are fomites for potentially pathogenic and highly drug-resistant microbes. The presence of these microbes on the mobile phones and hospital environmental surfaces is a concern as it poses a risk of pathogen transfer to patients and dissemination into the community.


Subject(s)
COVID-19 , Cell Phone , Methicillin-Resistant Staphylococcus aureus , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics
11.
Non-conventional in English | National Technical Information Service, Grey literature | ID: grc-753581

ABSTRACT

Transmission of SARS-CoV-2, the causative agent ofCOVID-19, primarily occurs through respiratory droplets, although increasing evidence suggests the potential for airborne transmission. However, fomites may act as a secondary transmission mode. Before purchase, produce is commonly handled by and exposed to multiple persons, including staff and shoppers, therefore increasing the likelihood of contamination via infectious respiratory droplets (> 5 micrometers) and/or droplet nuclei (less than or equal to 5 micrometers). Herein, we carried out a pilot study to model the stability of SARS-CoV-2 on apples, tomatoes, and jalapeno peppers at two temperatures following an aerosol exposure designed to simulate a low-dose SARS-CoV-2 airborne transmission event involving droplet nuclei.

12.
21st International Conference on Control, Automation and Systems, ICCAS 2021 ; 2021-October:263-270, 2021.
Article in English | Scopus | ID: covidwho-1701767

ABSTRACT

Autonomous systems have played an important role in response to the Covid-19 pandemic. Notably, there have been multiple attempts to leverage Unmanned Aerial Vehicles (UAVs) to disinfect surfaces. Although recent research suggests that surface transmission is less significant than airborne transmission in the spread of Covid-19, surfaces and fomites can play, and have played, critical roles in the transmission of Covid-19 and many other viruses, especially in settings such as child daycares, schools, offices, and hospitals. Employing UAVs for mass spray disinfection offers several potential advantages, including high-throughput application of disinfectant, large scale deployment, and the minimization of health risks to sanitation workers. Despite these potential benefits and preliminary usage of UAVs for disinfection, there has been little research into their design and effectiveness. In this work, we present an autonomous UAV capable of effectively disinfecting indoor surfaces. We identify relevant parameters such as disinfectant type and concentration, and application time and distance required of the UAV to disinfect high-touch surfaces such as door handles. Finally, we develop a robotic system that enables the fully autonomous disinfection of door handles in an unstructured and previously unknown environment. To our knowledge, this is the smallest untethered UAV ever built with both full autonomy and spraying capabilities, allowing it to operate in confined indoor settings, and the first autonomous UAV to specifically target high-touch surfaces on an individual basis with spray disinfectant, resulting in more efficient use of disinfectant. © 2021 ICROS.

13.
21st International Conference on Control, Automation and Systems (ICCAS) ; : 263-270, 2021.
Article in English | Web of Science | ID: covidwho-1689602

ABSTRACT

Autonomous systems have played an important role in response to the Covid-19 pandemic. Notably, there have been multiple attempts to leverage Unmanned Aerial Vehicles (UAVs) to disinfect surfaces. Although recent research suggests that surface transmission is less significant than airborne transmission in the spread of Covid-19, surfaces and fomites can play, and have played, critical roles in the transmission of Covid-19 and many other viruses, especially in settings such as child daycares, schools, offices, and hospitals. Employing UAVs for mass spray disinfection offers several potential advantages, including high-throughput application of disinfectant, large scale deployment, and the minimization of health risks to sanitation workers. Despite these potential benefits and preliminary usage of UAVs for disinfection, there has been little research into their design and effectiveness. In this work, we present an autonomous UAV capable of effectively disinfecting indoor surfaces. We identify relevant parameters such as disinfectant type and concentration, and application time and distance required of the UAV to disinfect high-touch surfaces such as door handles. Finally, we develop a robotic system that enables the fully autonomous disinfection of door handles in an unstructured and previously unknown environment. To our knowledge, this is the smallest untethered UAV ever built with both full autonomy and spraying capabilities, allowing it to operate in confined indoor settings, and the first autonomous UAV to specifically target high-touch surfaces on an individual basis with spray disinfectant, resulting in more efficient use of disinfectant.

14.
Front Public Health ; 9: 787841, 2021.
Article in English | MEDLINE | ID: covidwho-1561668

ABSTRACT

At the time of sampling (2020/2021), the number of new cases of SARS-CoV-2-positive individuals in the Czech Republic significantly exceeded the numbers in neighboring countries and in the EU. In terms of the number of deaths, the country ranked near the top of the list. Legislative orders required wearing masks indoors, disinfecting surfaces in public places, and limiting the number of people per sales area in commercial spaces. Due to an situation, most schools and shops were closed. The entire country anticipated a total lockdown. To assess the risk to public health regarding SARS-CoV-2 transmission, air and surfaces were sampled in two public places: a post office and a shopping center. Samples were also collected at the COVID-19 unit at the local hospital. Neither air nor surface samples were positive for SARS-CoV-2 virus particles in the post office or shopping center. Positive results were found in the hospital ward, with floors being the most and highest contaminated surface. Based on our results, we believe that public places do not pose a risk in relation to SARS-CoV-2 transmission, especially when epidemiological measures to reduce transmission are followed, such as wearing masks, using disinfectant or limiting the number of customers per retail establishment.


Subject(s)
COVID-19 , SARS-CoV-2 , Communicable Disease Control , Hospitals , Humans , Masks
15.
J Occup Environ Hyg ; 19(2): 91-101, 2022 02.
Article in English | MEDLINE | ID: covidwho-1553668

ABSTRACT

This study evaluated the efficacy of detergent-based surface cleaning methods against Murine Hepatitis Virus A59 (MHV) as a surrogate coronavirus for SARS-CoV-2. MHV (5% soil load in culture medium or simulated saliva) was inoculated onto four different high-touch materials [stainless steel (SS), Acrylonitrile Butadiene Styrene plastic (ABS), Formica, seat fabric (SF)]. Immediately and 2-hr post-inoculation, coupons were cleaned (damp wipe wiping) with and without pretreatment with detergent solution or 375 ppm hard water. Results identified that physical removal (no pretreatment) removed >2.3 log10 MHV on ABS, SS, and Formica when surfaces were cleaned immediately. Pretreatment with detergent or hard water increased effectiveness over wet wiping 2-hr post-inoculation; pretreatment with detergent significantly increased (p ≤ 0.05) removal of MHV in simulated saliva, but not in culture media, over hard water pretreatment (Formica and ABS). Detergent and hard water cleaning methods were ineffective on SF under all conditions. Overall, efficacy of cleaning methods against coronaviruses are material- and matrix-dependent; pre-wetting surfaces with detergent solutions increased efficacy against coronavirus suspended in simulated saliva. This study provides data highlighting the importance of incorporating a pre-wetting step prior to detergent cleaning and can inform cleaning strategies to reducing coronavirus surface transmission.


Subject(s)
COVID-19 , Murine hepatitis virus , Animals , Detergents , Humans , Mice , Porosity , SARS-CoV-2
16.
Indoor Air ; 32(1): e12968, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1550827

ABSTRACT

Despite their considerable prevalence, dynamics of hospital-associated COVID-19 are still not well understood. We assessed the nature and extent of air- and surface-borne SARS-CoV-2 contamination in hospitals to identify hazards of viral dispersal and enable more precise targeting of infection prevention and control. PubMed, ScienceDirect, Web of Science, Medrxiv, and Biorxiv were searched for relevant articles until June 1, 2021. In total, 51 observational cross-sectional studies comprising 6258 samples were included. SARS-CoV-2 RNA was detected in one in six air and surface samples throughout the hospital and up to 7.62 m away from the nearest patients. The highest detection rates and viral concentrations were reported from patient areas. The most frequently and heavily contaminated types of surfaces comprised air outlets and hospital floors. Viable virus was recovered from the air and fomites. Among size-fractionated air samples, only fine aerosols contained viable virus. Aerosol-generating procedures significantly increased (ORair  = 2.56 (1.46-4.51); ORsurface  = 1.95 (1.27-2.99)), whereas patient masking significantly decreased air- and surface-borne SARS-CoV-2 contamination (ORair  = 0.41 (0.25-0.70); ORsurface  = 0.45 (0.34-0.61)). The nature and extent of hospital contamination indicate that SARS-CoV-2 is likely dispersed conjointly through several transmission routes, including short- and long-range aerosol, droplet, and fomite transmission.


Subject(s)
Air Pollution, Indoor , COVID-19 , Cross Infection/transmission , Hospitals , Air Microbiology , COVID-19/transmission , Cross-Sectional Studies , Fomites/virology , Humans , Observational Studies as Topic , SARS-CoV-2
17.
Appl Environ Microbiol ; 87(22): e0121521, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1494942

ABSTRACT

Fomites can represent a reservoir for pathogens, which may be subsequently transferred from surfaces to skin. In this study, we aim to understand how different factors (including virus type, surface type, time since last hand wash, and direction of transfer) affect virus transfer rates, defined as the fraction of virus transferred, between fingerpads and fomites. To determine this, 360 transfer events were performed with 20 volunteers using Phi6 (a surrogate for enveloped viruses), MS2 (a surrogate for nonenveloped viruses), and three clean surfaces (stainless steel, painted wood, and plastic). Considering all transfer events (all surfaces and both transfer directions combined), the mean transfer rates of Phi6 and MS2 were 0.17 and 0.26, respectively. Transfer of MS2 was significantly higher than that of Phi6 (P < 0.05). Surface type was a significant factor that affected the transfer rate of Phi6: Phi6 is more easily transferred to and from stainless steel and plastic than to and from painted wood. Direction of transfer was a significant factor affecting MS2 transfer rates: MS2 is more easily transferred from surfaces to fingerpads than from fingerpads to surfaces. Data from these virus transfer events, and subsequent transfer rate distributions, provide information that can be used to refine quantitative microbial risk assessments. This study provides a large-scale data set of transfer events with a surrogate for enveloped viruses, which extends the reach of the study to the role of fomites in the transmission of human enveloped viruses like influenza and SARS-CoV-2. IMPORTANCE This study created a large-scale data set for the transfer of enveloped viruses between skin and surfaces. The data set produced by this study provides information on modeling the distribution of enveloped and nonenveloped virus transfer rates, which can aid in the implementation of risk assessment models in the future. Additionally, enveloped and nonenveloped viruses were applied to experimental surfaces in an equivalent matrix to avoid matrix effects, so results between different viral species can be directly compared without confounding effects of different matrices. Our results indicating how virus type, surface type, time since last hand wash, and direction of transfer affect virus transfer rates can be used in decision-making processes to lower the risk of viral infection from transmission through fomites.


Subject(s)
Fingers/virology , Fomites/virology , Virus Physiological Phenomena , Bacteriophage phi 6/physiology , Bacteriophage phi 6/ultrastructure , Fomites/classification , Hand Hygiene , Humans , Levivirus/physiology , Levivirus/ultrastructure , Viral Envelope/ultrastructure , Virus Diseases/transmission , Virus Diseases/virology , Viruses/ultrastructure
18.
Am J Infect Control ; 50(3): 325-329, 2022 03.
Article in English | MEDLINE | ID: covidwho-1487575

ABSTRACT

BACKGROUND: The COVID-19 pandemic has had an unprecedented impact on global health and the world's economies. Proliferation of virulent and deadly SARS-CoV-2 variants require effective transmission mitigation strategies. Under reasonable environmental conditions, culturable and infectious SARS-CoV-2 can survive on contaminated fomites from hours to months. In the present study we evaluated a surface-anchored polymeric quaternary ammonium antimicrobial to help reduce fomite transmission of SARS-CoV-2 from contaminated surfaces. METHODS: Two studies were performed on antimicrobial pre-treated metal disks in March 2020 by two independent Biosafety Level III (BSL-3) equipped laboratories in April 2020. These facilities were in Belgium (the Rega Medical Research Institute) and Australia (the Peter Doherty Institute) and independently applied quantitative carrier-based methodologies using the authentic SARS-CoV-2 isolates (hCoV-19/Australia/VIC01/2020, hCoV-19/Belgium/GHB-03021/2020). RESULTS: Residual dry tests were independently conducted at both facilities and demonstrated sustained virion destruction (108.23 TCID50/carrier GHB-03021 isolate, and 103.66 TCID50/carrier VIC01 isolate) 1 hour (drying) + 10 minutes after inoculation. Reductions are further supported by degradation of RNA on antimicrobial-treated surfaces using qRT-PCR. CONCLUSIONS: Using a polymeric quaternary ammonium antimicrobial (EPA/PMRA registered) the results independently support a sustained antiviral effect via SARS-CoV-2 virion destruction and viral RNA degradation. This indicates that silane-anchored quaternary ammonium compound (SiQAC-18) treated surfaces could play an important role in mitigating the communicability and fomite transmission of SARS-CoV-2.


Subject(s)
Ammonium Compounds , COVID-19 , Fomites , Humans , Pandemics , SARS-CoV-2
19.
Int J Environ Res Public Health ; 18(21)2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1480740

ABSTRACT

The COVID-19 outbreak is a global health concern. Understanding the transmission modes of the SARS-CoV-2 virus is key to limit the spread of the pandemic. A lack of knowledge about the possibility of SARS-CoV-2 transmission and infection through contaminated surfaces is noticeable and recent studies have stated conflicting findings. This scoping review aims to understand the risks of contaminations via fomites better. Relevant publications were selected through Google Scholar, Web of Science, PubMed, Embase, Medline, and Cochrane Library, with related keywords. PRISMA-ScR guidelines were followed. Out of the 565 articles found, exclusion criteria were applied, duplicates removed, and a total of 25 articles were finally included in the study. The included documents were assessed by the contamination risk: "low" (37.5%), "high" (16.7%), "plausible" (8.3%), "unlikely" (8.3%) risk, and "insufficient evidence" (29.2%). Research in hospital settings was found as the main setting in the reviewed papers, which precisely indicated the risk of contaminated surfaces. This scoping review underscores the risk of SARS-CoV-2 infection via contaminated surfaces assessed as low in the majority of the reviewed articles. Further evaluation of the risk of the virus transmission by fomites and providing adequate information on its infectivity via contaminated surfaces in real-life conditions is essential.


Subject(s)
COVID-19 , SARS-CoV-2 , Fomites , Hospitals , Humans , Pandemics
20.
J Occup Environ Hyg ; 18(12): 541-546, 2021 12.
Article in English | MEDLINE | ID: covidwho-1460030

ABSTRACT

This in vitro study was aimed to assess the efficacy of dry steam in inactivating Human Coronavirus OC43 (HCoV-OC43) as surrogate of SARS-CoV-2, Human Influenza Virus A/H1N1/WSN/33 and Echovirus 7 on stainless steel, polypropylene, and cotton. The virus models were chosen on the basis of their transmission route and environmental resistance. Tests were carried out under a laminar flow cabinet, where two panels of each material were contaminated with a viral suspension. The inocula were left to dry and then the virus on untreated panel (control) was collected by swabbing in order to determine the initial titer. The other panel was treated using a professional vacuum cleaner equipped with a dry steam generator. Dry steam is generated in a boiler where tap water is heated up to 155 °C at 5.5 bar pressure and then during the passage along the flexible hose the temperature decreases to a value between 100 °C and 110 °C at the output. The dry steam was applied for four sec with a window wiper on metal and plastic panels or a brush covered by a microfiber cap on cotton, simulating the steam application during routine cleaning. After the treatment, infectious virus possibly remained on the surface was collected following the same swabbing procedure applied for controls. HCoV-OC43 and Echovirus 7 were titrated by end-point method on HCT-8 line cells and Vero cells, respectively, while Human Influenza Virus was quantified by plaque reduction assay on MDCK cells. Dry steam resulted effective against the three viruses on all tested materials, achieving a mean Log10 reduction factor ≥4 in viral titer of treated samples compared with controls according to UNI EN 14476:2019. Thus, dry steam may be proposed as an ease to use, effective, fast, and nontoxic alternative to chemicals for surface disinfection without damaging materials. Therefore, this device could be employed not only in healthcare facilities but also in occupational, domestic, and community settings, with advantages for environment and human health.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Animals , Chlorocebus aethiops , Disinfection , Enterovirus B, Human , Humans , SARS-CoV-2 , Steam , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL