ABSTRACT
BACKGROUND: Understanding the humoral response pattern of coronavirus disease 2019 (COVID-19) is one of the essential factors to better characterize the immune memory of patients, which allows understanding the temporality of reinfection, provides answers about the efficacy and durability of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and consequently helps in global public health and vaccination strategy. Among the patients who became infected with SARS-CoV-2, the majority who did not progress to death were those who developed the mild COVID-19, so understanding the pattern and temporality of the antibody response of these patients is certainly relevant. AIM: To investigate the temporal pattern of humoral response of specific immunoglobulin G (IgG) in mild cases of COVID-19. METHODS: Blood samples from 191 COVID-19 real-time reverse transcriptase-polymerase chain reaction (RT-qPCR)-positive volunteers from the municipality of Toledo/ Paraná/Brazil, underwent two distinct serological tests, enzyme-linked immunosorbent assay, and detection of anti-nucleocapsid IgG. Blood samples and clinicoepidemiological data of the volunteers were collected between November 2020 and February 2021. All assays were performed in duplicate and the manufacturers' recommendations were strictly followed. The data were statistically analyzed using multiple logistic regression; the variables were selected by applying the P < 0.05 criterion. RESULTS: Serological tests to detect specific IgG were performed on serum samples from volunteers who were diagnosed as being positive by RT-qPCR for COVID-19 or had disease onset in the time interval from less than 1 mo to 7 mo. The time periods when the highest number of participants with detectable IgG was observed were 1, 2 and 3 mo. It was observed that 9.42% of participants no longer had detectable IgG antibodies 1 mo only after being infected with SARS-CoV-2 and 1.57% were also IgG negative at less than 1 mo. At 5 mo, 3.14% of volunteers were IgG negative, and at 6 or 7 mo, 1 volunteer (0.52%) had no detectable IgG. During the period between diagnosis by RT-qPCR/symptoms onset and the date of collection for the study, no statistical significance was observed for any association analyzed. Moreover, considering the age category between 31 and 59 years as the exposed group, the P value was 0.11 for the category 31 to 59 years and 0.32 for the category 60 years or older, showing that in both age categories there was no association between the pair of variables analyzed. Regarding chronic disease, the exposure group consisted of the participants without any comorbidity, so the P value of 0.07 for the category of those with at least one chronic disease showed no association between the two variables. CONCLUSION: A temporal pattern of IgG response was not observed, but it is suggested that immunological memory is weak and there is no association between IgG production and age or chronic disease in mild COVID-19.
ABSTRACT
Trained immunity is defined as the de facto memory characteristics induced in innate immune cells after exposure to microbial stimuli after infections or certain types of vaccines. Through epigenetic and metabolic reprogramming of innate immune cells after exposure to these stimuli, trained immunity induces an enhanced nonspecific protection by improving the inflammatory response upon restimulation with the same or different pathogens. Recent studies have increasingly shown that trained immunity can, on the one hand, be induced by exposure to viruses; on the other hand, when induced, it can also provide protection against heterologous viral infections. In this review we explore current knowledge on trained immunity and its relevance for viral infections, as well as its possible future uses.
Subject(s)
Vaccines , Virus Diseases , Humans , Immunity, Innate , Immunologic MemoryABSTRACT
During the SARS CoV-2 primary infection, the neutralizing antibodies focused against the spike (S) glycoproteins are responsible for blockage of virus-host cell interaction. The cellular response mediated by CD4+ and CD8+ T-cells is responsible for control of viremia. Immune memory against SARS-CoV-2 depends on virus type, replication kinetics and route of penetration. The formation and persistence of germinal centers are critical for the generation of affinity-matured plasma cells and memory B cells capable of mediating durable immunity. They can persist up to 30 weeks after vaccination and several months after infection. Heterogeneity in the longevity of the vaccination-induced GC response is significant.
Subject(s)
COVID-19 , Viral Envelope Proteins , Humans , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , CD8-Positive T-LymphocytesABSTRACT
The COVID-19 pandemic has become a serious global public health threat with more than 540 million infections and 6.32 million cases of death as of 25 June, 2022.Understanding whether COVID-19 patients can obtain persistent immune protection after recovery is crucial for vaccine development, disease control and epidemic forecast.The persistent immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is mainly derived from the immune memory.Thus, the generation and maintenance of immune memory specifically targeted to the virus were reviewed in this paper. Copyright © 2022 Society of Microbiology and Immunology. All rights reserved.
ABSTRACT
SARS-CoV-2 mRNA vaccines prevent severe COVID-19 by generating immune memory, comprising specific antibodies and memory B and T cells. Although children are at low risk of severe COVID-19, the spreading of highly transmissible variants has led to increasing in COVID-19 cases and hospitalizations also in the youngest, but vaccine coverage remains low. Immunogenicity to mRNA vaccines has not been extensively studied in children 5 to 11 years old. In particular, cellular immunity to the wild-type strain (Wuhan) and the cross-reactive response to the Omicron variant of concern has not been investigated. We assessed the humoral and cellular immune response to the SARS-CoV-2 BNT162b2 vaccine in 27 healthy children. We demonstrated that vaccination induced a potent humoral and cellular immune response in all vaccinees. By using spike-specific memory B cells as a measurable imprint of a previous infection, we found that 50% of the children had signs of a past, undiagnosed infection before vaccination. Children with pre-existent immune memory generated significantly increased levels of specific antibodies, and memory T and B cells, directed against not only the wild type virus but also the omicron variant.
Subject(s)
COVID-19 , Vaccines , Humans , Child , Child, Preschool , BNT162 Vaccine , SARS-CoV-2 , COVID-19/prevention & control , Immunologic Memory , mRNA Vaccines , AntibodiesABSTRACT
Background: Although SARS-CoV-2 vaccines have proven effective in eliciting a protective immune response in healthy individuals, their ability to induce a durable immune response in immunocompromised individuals remains poorly understood. Primary antibody deficiency (PAD) syndromes are among the most common primary immunodeficiency disorders in adults and are characterized by hypogammaglobulinemia and impaired ability to mount robust antibody responses following infection or vaccination. Methods: Here, we present an analysis of both the B and T cell response in a prospective cohort of 30 individuals with PAD up to 150 days following initial COVID-19 vaccination and 150 days post mRNA booster vaccination. Results: After the primary vaccination series, many of the individuals with PAD syndromes mounted SARS-CoV-2 specific memory B and CD4+ T cell responses that overall were comparable to healthy individuals. Nonetheless, individuals with PAD syndromes had reduced IgG1+ and CD11c+ memory B cell responses following the primary vaccination series, with the defect in IgG1 class-switching rescued following mRNA booster doses. Boosting also elicited an increase in the SARS-CoV-2-specific B and T cell response and the development of Omicron-specific memory B cells in COVID-19-naïve PAD patients. Individuals that lacked detectable B cell responses following primary vaccination did not benefit from booster vaccination. Conclusion: Together, these data indicate that SARS-CoV-2 vaccines elicit memory B and T cells in most PAD patients and highlights the importance of booster vaccination in immunodeficient individuals.
Subject(s)
COVID-19 , Primary Immunodeficiency Diseases , Adult , Humans , Immunoglobulin G , Memory B Cells , COVID-19 Vaccines , SARS-CoV-2 , Prospective Studies , COVID-19/prevention & control , RNA, Messenger , VaccinationABSTRACT
Vaccination against coronavirus disease 2019 (COVID-19) has contributed greatly to providing protection against severe disease, thereby reducing hospital admissions and deaths. Several studies have reported reduction in vaccine effectiveness over time against the Omicron sub-lineages. However, the willingness to receive regular booster doses in the general population is declining. To determine the need for repeated booster vaccinations in healthy individuals and to aid policymakers in future public health interventions for COVID-19, we aim to gain insight into the immunogenicity of the additional bivalent booster vaccination in a representative sample of the healthy Dutch population. The SWITCH ON study was initiated to investigate three main topics: i) immunogenicity of bivalent vaccines after priming with adenovirus- or mRNA-based vaccines, ii) immunological recall responses and reactivity with relevant variants after booster vaccination, and iii) the necessity of booster vaccinations for the healthy population in the future. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT05471440.
Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , Health Personnel , Vaccination , Health Status , Public HealthABSTRACT
Although parental vaccines offer long-term protection against homologous strains, they rely exclusively on adaptive immune memory to produce neutralizing antibodies that are ineffective against emerging viral variants. Growing evidence highlights the multifaceted functions of trained immunity to elicit a rapid and enhanced innate response against unrelated stimuli or pathogens to subsequent triggers. This review discusses the protective role of trained immunity against respiratory pathogens and the experimental models essential for evaluating novel inducers of trained immunity. The review further elaborates on the potential of trained immunity to leverage protection against pathogens via the molecular patterns of antigens by pathogen recognition receptors (PPRs) on innate immune cells. The review also focuses on integrating trained innate memory with adaptive memory to shape next-generation vaccines by coupling each one's unique characteristics.
ABSTRACT
Background: Asthma patients potentially have impaired adaptive immunity to virus infection. The levels of SARS-CoV-2-specific adaptive immunity between COVID-19 survivors with and without asthma are presently unclear. Methods: COVID-19 survivors (patients with asthma n=11, with allergies n=8, and COVID-19 only n=17) and non-COVID-19 individuals (asthmatic patients n=10 and healthy controls n=9) were included. The COVID-19 patients were followed up at about 8 months and 16 months after discharge. The clinical characteristics, lymphocyte subsets, memory T cells, and humoral immunity including SARS-CoV-2 specific antibodies, SARS-CoV-2 pseudotyped virus neutralization assay, and memory B cells were analyzed in these subjects. Results: The strength of virus-specific T cell response in COVID-19 survivors was positively correlated with the percentage of blood eosinophils and Treg cells (r=0.4007, p=0.0188; and r=0.4435, p=0.0086 respectively) at 8-month follow-up. There were no statistical differences in the levels of SARS-CoV-2-specific T cell response between the COVID-19 survivors with, and without, asthma. Compared to those without asthma, the COVID-19 with asthma survivors had higher levels of SARS-CoV-2-specific neutralizing antibodies (NAbs) at the 8-month follow-up (p<0.05). Moreover, the level of NAbs in COVID-19 survivors was positively correlated with the percentage of Treg and cTfh2 cells (r=0.5037, p=0.002; and r=0.4846, p=0.0141), and negatively correlated with the percentage of Th1 and Th17 cells (r=-0.5701, p=0.0003; and r=-0.3656, p=0.0308), the ratio of Th1/Th2, Th17/Treg, and cTfh1/cTfh2 cell (r=-0.5356, r=-0.5947, r=-0.4485; all p<0.05). The decay rate of NAbs in the COVID-19 survivors with asthma was not significantly different from that of those without asthma at 16-month follow-up. Conclusion: The level of SARS-CoV-2-specific NAbs in COVID-19 survivors with asthma was higher than that of those without asthma at 8-month follow-up. The SARS-CoV-2-specific T cell immunity was associated with blood eosinophils and Treg percentages. The SARS-CoV-2-specific humoral immunity was closely associated with cTfh2/cTfh1 imbalance and Treg/Th17 ratio. According to the findings, asthmatic patients in COVID-19 convalescent period may benefit from an enhanced specific humoral immunity, which associates with skewed Th2/Th1 and Treg/Th17 immune.
Subject(s)
Asthma , COVID-19 , Adaptive Immunity , Antibodies, Neutralizing , Antibodies, Viral , Humans , SARS-CoV-2 , SurvivorsABSTRACT
The world is now apparently at the last/recovery stage of the COVID-19 pandemic, starting from 29 December 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the progression of time, several mutations have taken place in the original SARS-CoV-2 Wuhan strain, which have generated variants of concern (VOC). Therefore, combatting COVID-19 has required the development of COVID-19 vaccines using several platforms. The immunity induced by those vaccines is vital to study in order to assure total protection against SARS-CoV-2 and its emerging variants. Indeed, understanding and identifying COVID-19 protection mechanisms or the host immune responses are of significance in terms of designing both new and repurposed drugs as well as the development of novel vaccines with few to no side effects. Detecting the immune mechanisms for host protection against SARS-CoV-2 and its variants is crucial for the development of novel COVID-19 vaccines as well as to monitor the effectiveness of the currently used vaccines worldwide. Immune memory in terms of the production of neutralizing antibodies (NAbs) during reinfection is also very crucial to formulate the vaccine administration schedule/vaccine doses. The response of antigen-specific antibodies and NAbs as well as T cell responses, along with the protective cytokine production and the innate immunity generated upon COVID-19 vaccination, are discussed in the current review in comparison to the features of naturally induced protective immunity.
Subject(s)
COVID-19 , Viral Vaccines , Humans , COVID-19 Vaccines , SARS-CoV-2/genetics , COVID-19/prevention & control , Pandemics/prevention & controlABSTRACT
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has been prominent around the world since it was first discovered, affecting more than 100 million people. Although the symptoms of most infected patients are not serious, there is still a considerable proportion of patients who need hospitalization and even develop fatal symptoms such as cytokine storms, acute respiratory distress syndrome and so on. Cytokine storm is usually described as a collection of clinical manifestations caused by overactivation of the immune system, which plays an important role in tissue injury and multiorgan failure. The immune system of healthy individuals is composed of two interrelated parts, the innate immune system and the adaptive immune system. Innate immunity is the body's first line of defense against viruses; it can quickly perceive viruses through pattern recognition receptors and activate related inflammatory pathways to clear pathogens. The adaptive immune system is activated by specific antigens and is mainly composed of CD4+ T cells, CD8+ T cells and B cells, which play different roles in viral infection. Here, we discuss the immune response after SARS-CoV-2 infection. In-depth study of the recognition of and response of innate immunity and adaptive immunity to SARS-CoV-2 will help to prevent the development of critical cases and aid the exploration of more targeted treatments.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunity, Innate , CD4-Positive T-Lymphocytes , CD8-Positive T-LymphocytesABSTRACT
Coronavac is a widely used SARS-CoV-2 inactivated vaccine, but its long-term immune response assessment is still lacking. We evaluated SARS-CoV-2-specific immune responses, including T cell activation markers, antigen-specific cytokine production and antibody response following vaccination in 53 adult and elderly individuals participating in a phase 3 clinical trial. Activated follicular helper T (Tfh), non-Tfh and memory CD4+ T cells were detected in almost all subjects early after the first vaccine dose. Activated memory CD4+ T cells were predominantly of central and effector memory T cell phenotypes and were sustained for at least 6 months. We also detected a balanced Th1-, Th2- and Th17/Th22-type cytokine production that was associated with response over time, together with particular cytokine profile linked to poor responses in older vaccinees. SARS-CoV-2-specific IgG levels peaked 14 days after the second dose and were mostly stable over one year. CoronaVac was able to induce a potent and durable antiviral antigen-specific cellular response and the cytokine profiles related to the response over time and impacted by the senescence were defined.
Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Antibodies, Viral , Cytokines , Immunity, Cellular , Immunoglobulin G , SARS-CoV-2 , VaccinationABSTRACT
The adaptive immune response induced by SARS-CoV-2 plays a key role in the antiviral process and can protect the body from the threat of infection for a certain period of time. However, owing to the limitations of clinical studies, the antiviral mechanisms, protective thresholds, and persistence of the immune memory of adaptive immune responses remain unclear. This review summarizes existing research models for SARS-CoV-2 and elaborates on the advantages of animal models in simulating the clinical symptoms of COVID-19 in humans. In addition, we systematically summarize the research progress on the SARS-CoV-2 adaptive immune response and the remaining key issues, as well as the application and prospects of animal models in this field. This paper provides direction for in-depth analysis of the anti-SARS-CoV-2 mechanism of the adaptive immune response and lays the foundation for the development and application of vaccines and drugs.
Subject(s)
COVID-19 , SARS-CoV-2 , Adaptive Immunity , Animals , Antiviral Agents/therapeutic use , Humans , Models, AnimalABSTRACT
Vaccines induce antibodies, but T cell responses are also important for protection against Coronavirus disease 2019. Here, we analyzed the frequency of memory T cells in infected and/or vaccinated individuals and observed a decrease in central memory T cells in individuals who were vaccinated following COVID-19 infection.
Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 Vaccines , COVID-19 , Antibodies, Viral , CD8-Positive T-Lymphocytes/cytology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Memory T Cells/cytology , VaccinationABSTRACT
Since early 2020, the world has been embroiled in an ongoing viral pandemic with SARS-CoV-2 and emerging variants resulting in mass morbidity and an estimated 6 million deaths globally. The scientific community pivoted rapidly, providing unique and innovative means to identify infected individuals, technologies to evaluate immune responses to infection and vaccination, and new therapeutic strategies to treat infected individuals. Never before has immunology been so critically at the forefront of combatting a global pandemic. It has now become evident that not just antibody responses, but formation and durability of immune memory cells following vaccination are associated with protection against severe disease from SARS-CoV-2 infection. Furthermore, the emergence of variants of concern (VoC) highlight the need for immunological markers to quantify the protective capacity of Wuhan-based vaccines. Thus, harnessing and modulating the immune response is key to successful vaccination and treatment of disease. We here review the latest knowledge about immune memory generation and durability following natural infection and vaccination, and provide insights into the attributes of immune memory that may protect from emerging variants.
Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Immunologic Memory , Vaccination , PandemicsABSTRACT
The immune system generates memory cells on infection with a virus for the first time. These memory cells play an essential role in protection against reinfection. Tissue-resident memory T (TRM) cells can be generated in situ once attacked by pathogens. TRM cells dominate the defense mechanism during early stages of reinfection and have gradually become one of the most popular focuses in recent years. Here, we mainly reviewed the development and regulation of various TRM cell signaling pathways in the respiratory tract. Moreover, we explored the protective roles of TRM cells in immune response against various respiratory viruses, such as Respiratory Syncytial Virus (RSV) and influenza. The complex roles of TRM cells against SARS-CoV-2 infection are also discussed. Current evidence supports the therapeutic strategies targeting TRM cells, providing more possibilities for treatment. Rational utilization of TRM cells for therapeutics is vital for defense against respiratory viruses.
Subject(s)
Memory T Cells , Respiratory Syncytial Virus, Human , COVID-19 , Humans , Immunologic Memory , Lung , Reinfection , SARS-CoV-2ABSTRACT
The humoral immune response, a key arm of adaptive immunity, consists of B cells and their products. Upon infection or vaccination, B cells undergo a Darwinian evolutionary process in germinal centers (GCs), resulting in the production of antibodies and memory B cells. We developed a computational model to study how humoral memory is recalled upon reinfection or booster vaccination. We find that upon reexposure to the same antigen, affinity-dependent selective expansion of available memory B cells outside GCs (extragerminal center compartments [EGCs]) results in a rapid response made up of the best available antibodies. Memory B cells that enter secondary GCs can undergo mutation and selection to generate even more potent responses over time, enabling greater protection upon subsequent exposure to the same antigen. GCs also generate a diverse pool of B cells, some with low antigen affinity. These results are consistent with our analyses of data from humans vaccinated with two doses of a COVID-19 vaccine. Our results further show that the diversity of memory B cells generated in GCs is critically important upon exposure to a variant antigen. Clones drawn from this diverse pool that cross-react with the variant are rapidly expanded in EGCs to provide the best protection possible while new secondary GCs generate a tailored response for the new variant. Based on a simple evolutionary model, we suggest that the complementary roles of EGC and GC processes we describe may have evolved in response to complex organisms being exposed to evolving pathogen families for millennia.