Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
ACS Appl Mater Interfaces ; 13(37): 44136-44146, 2021 Sep 22.
Article in English | MEDLINE | ID: covidwho-1402018

ABSTRACT

With the ongoing global pandemic of coronavirus disease 2019 (COVID-19), there is an increasing quest for more accessible, easy-to-use, rapid, inexpensive, and high-accuracy diagnostic tools. Traditional disease diagnostic methods such as qRT-PCR (quantitative reverse transcription-PCR) and ELISA (enzyme-linked immunosorbent assay) require multiple steps, trained technicians, and long turnaround time that may worsen the disease surveillance and pandemic control. In sight of this situation, a rapid, one-step, easy-to-use, and high-accuracy diagnostic platform will be valuable for future epidemic control, especially for regions with scarce medical resources. Herein, we report a magnetic particle spectroscopy (MPS) platform for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biomarkers: spike and nucleocapsid proteins. This technique monitors the dynamic magnetic responses of magnetic nanoparticles (MNPs) and uses their higher harmonics as a measure of the nanoparticles' binding states. By anchoring polyclonal antibodies (pAbs) onto MNP surfaces, these nanoparticles function as nanoprobes to specifically bind to target analytes (SARS-CoV-2 spike and nucleocapsid proteins in this work) and form nanoparticle clusters. This binding event causes detectable changes in higher harmonics and allows for quantitative and qualitative detection of target analytes in the liquid phase. We have achieved detection limits of 1.56 nM (equivalent to 125 fmole) and 12.5 nM (equivalent to 1 pmole) for detecting SARS-CoV-2 spike and nucleocapsid proteins, respectively. This MPS platform combined with the one-step, wash-free, nanoparticle clustering-based assay method is intrinsically versatile and allows for the detection of a variety of other disease biomarkers by simply changing the surface functional groups on MNPs.


Subject(s)
COVID-19/virology , Nanoparticles/chemistry , Nucleocapsid Proteins/chemistry , SARS-CoV-2/chemistry , Spectrum Analysis/methods , Spike Glycoprotein, Coronavirus/chemistry , Cluster Analysis , Humans
2.
Biosens Bioelectron ; 192: 113536, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1330665

ABSTRACT

The ongoing COVID-19 pandemic stresses the need for widely available diagnostic tests for the presence of SARS-CoV-2 in individuals. Due to the limited availability of vaccines, diagnostic assays which are cheap, easy-to-use at the point-of-need, reliable and fast, are currently the only way to control the pandemic situation. Here we present a diagnostic assay for the detection of pathogen-specific nucleic acids based on changes of the magnetic response of magnetic nanoparticles: The target-mediated hybridization of modified nanoparticles leads to an increase in the hydrodynamic radius. This resulting change in the magnetic behaviour in an ac magnetic field can be measured via magnetic particle spectroscopy (MPS), providing a viable tool for the accurate detection of target nucleic acids. In this work we show that single stranded DNA can be detected in a concentration-dependent manner by these means. In addition to detecting synthetic DNA with an arbitrary sequence in a concentration down to 500 pM, we show that RNA and SARS-CoV-2-specific DNA as well as saliva as a sample medium can be used for an accurate assay. These proof-of-principle experiments show the potential of MPS based assays for the reliable and fast diagnostics of pathogens like SARS-CoV-2 in a point-of-need fashion without the need of complex sample preparation.


Subject(s)
Biosensing Techniques , COVID-19 , Nucleic Acids , Humans , Magnetic Phenomena , Pandemics , RNA, Viral , SARS-CoV-2 , Sensitivity and Specificity , Spectrum Analysis
3.
ACS Sens ; 6(3): 976-984, 2021 03 26.
Article in English | MEDLINE | ID: covidwho-1047925

ABSTRACT

The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global medical systems and economies and rules our daily living life. Controlling the outbreak of SARS-CoV-2 has become one of the most important and urgent strategies throughout the whole world. As of October 2020, there have not yet been any medicines or therapies to be effective against SARS-CoV-2. Thus, rapid and sensitive diagnostics is the most important measures to control the outbreak of SARS-CoV-2. Homogeneous biosensing based on magnetic nanoparticles (MNPs) is one of the most promising approaches for rapid and highly sensitive detection of biomolecules. This paper proposes an approach for rapid and sensitive detection of SARS-CoV-2 with functionalized MNPs via the measurement of their magnetic response in an ac magnetic field. For proof of concept, mimic SARS-CoV-2 consisting of spike proteins and polystyrene beads are used for experiments. Experimental results demonstrate that the proposed approach allows the rapid detection of mimic SARS-CoV-2 with a limit of detection of 0.084 nM (5.9 fmole). The proposed approach has great potential for designing a low-cost and point-of-care device for rapid and sensitive diagnostics of SARS-CoV-2.


Subject(s)
Antibodies, Monoclonal/chemistry , Magnetite Nanoparticles/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Monoclonal/immunology , Biosensing Techniques , Magnetic Phenomena , Polystyrenes/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL