Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
Front Immunol ; 12: 767726, 2021.
Article in English | MEDLINE | ID: covidwho-1639598


Infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the rapid spread of coronavirus disease 2019 (COVID-19), has generated a public health crisis worldwide. The molecular mechanisms of SARS-CoV-2 infection and virus-host interactions are still unclear. In this study, we identified four unique microRNA-like small RNAs encoded by SARS-CoV-2. SCV2-miR-ORF1ab-1-3p and SCV2-miR-ORF1ab-2-5p play an important role in evasion of type I interferon response through targeting several genes in type I interferon signaling pathway. Particularly worth mentioning is that highly expressed SCV2-miR-ORF1ab-2-5p inhibits some key genes in the host innate immune response, such as IRF7, IRF9, STAT2, OAS1, and OAS2. SCV2-miR-ORF1ab-2-5p has also been found to mediate allelic differential expression of COVID-19-susceptible gene OAS1. In conclusion, these results suggest that SARS-CoV-2 uses its miRNAs to evade the type I interferon response and links the functional viral sequence to the susceptible genetic background of the host.

Genetic Predisposition to Disease/genetics , Immune Evasion/genetics , Interferon Type I/genetics , SARS-CoV-2/genetics , 2',5'-Oligoadenylate Synthetase/genetics , COVID-19/pathology , Cell Line , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Immunity, Innate/immunology , Interferon Regulatory Factor-7/genetics , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , MicroRNAs/genetics , Polymorphism, Single Nucleotide/genetics , SARS-CoV-2/immunology , STAT2 Transcription Factor/genetics
Noncoding RNA ; 7(2)2021 Jun 18.
Article in English | MEDLINE | ID: covidwho-1273487


Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a member of the genus Betacoronavirus in the family Coronaviridae, possesses an unusually large single-stranded viral RNA (ssvRNA) genome of about ~29,811 nucleotides (nt) that causes severe and acute respiratory distress and a highly lethal viral pneumonia known as COVID-19. COVID-19 also presents with multiple ancillary systemic diseases and often involves cardiovascular, inflammatory, and/or neurological complications. Pathological viral genomes consisting of ssvRNA, like cellular messenger RNA (mRNA), are susceptible to attack, destruction, neutralization, and/or modulation by naturally occurring small non-coding RNAs (sncRNAs) within the host cell, some of which are known as microRNAs (miRNAs). This paper proposes that the actions of the 2650 known human miRNAs and other sncRNAs form the basis for an under-recognized and unappreciated innate-immune regulator of ssvRNA viral genome activities and have implications for the efficiency of SARS-CoV-2 invasion, infection, and replication. Recent research indicates that both miRNA and mRNA abundance, speciation, and complexity varies widely amongst human individuals, and this may: (i) In part explain the variability in the innate-immune immunological and pathophysiological response of different human individuals to the initiation and progression of SARS-CoV-2 infection in multiple tissue types; and (ii) further support our understanding of human biochemical and genetic individuality and the variable resistance of individuals to ssvRNA-mediated viral infection and disease. This commentary will briefly address current findings and concepts in this fascinating research area of non-coding RNA and innate-immunity with special reference to natural host miRNAs, SARS-CoV-2, and the current COVID-19 pandemic.

Int J Mol Sci ; 22(9)2021 May 07.
Article in English | MEDLINE | ID: covidwho-1231495


Extracellular vesicles (EVs) are membranous structures, which are secreted by almost every cell type analyzed so far. In addition to their importance for cell-cell communication under physiological conditions, EVs are also released during pathogenesis and mechanistically contribute to this process. Here we summarize their functional relevance in asthma, one of the most common chronic non-communicable diseases. Asthma is a complex persistent inflammatory disorder of the airways characterized by reversible airflow obstruction and, from a long-term perspective, airway remodeling. Overall, mechanistic studies summarized here indicate the importance of different subtypes of EVs and their variable cargoes in the functioning of the pathways underlying asthma, and show some interesting potential for the development of future therapeutic interventions. Association studies in turn demonstrate a good diagnostic potential of EVs in asthma.

Asthma/metabolism , Extracellular Vesicles/metabolism , Animals , Asthma/genetics , Asthma/microbiology , Asthma/physiopathology , Biomarkers/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Biological