Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Breath Res ; 16(3)2022 05 06.
Article in English | MEDLINE | ID: covidwho-1806207

ABSTRACT

COVID-19 detection currently relies on testing by reverse transcription polymerase chain reaction (RT-PCR) or antigen testing. However, SARS-CoV-2 is expected to cause significant metabolic changes in infected subjects due to both metabolic requirements for rapid viral replication and host immune responses. Analysis of volatile organic compounds (VOCs) from human breath can detect these metabolic changes and is therefore an alternative to RT-PCR or antigen assays. To identify VOC biomarkers of COVID-19, exhaled breath samples were collected from two sample groups into Tedlar bags: negative COVID-19 (n= 12) and positive COVID-19 symptomatic (n= 14). Next, VOCs were analyzed by headspace solid phase microextraction coupled to gas chromatography-mass spectrometry. Subjects with COVID-19 displayed a larger number of VOCs as well as overall higher total concentration of VOCs (p< 0.05). Univariate analyses of qualified endogenous VOCs showed approximately 18% of the VOCs were significantly differentially expressed between the two classes (p< 0.05), with most VOCs upregulated. Machine learning multivariate classification algorithms distinguished COVID-19 subjects with over 95% accuracy. The COVID-19 positive subjects could be differentiated into two distinct subgroups by machine learning classification, but these did not correspond with significant differences in number of symptoms. Next, samples were collected from subjects who had previously donated breath bags while experiencing COVID-19, and subsequently recovered (COVID Recovered subjects (n= 11)). Univariate and multivariate results showed >90% accuracy at identifying these new samples as Control (COVID-19 negative), thereby validating the classification model and demonstrating VOCs dysregulated by COVID are restored to baseline levels upon recovery.


Subject(s)
COVID-19 , Volatile Organic Compounds , Breath Tests/methods , Exhalation , Humans , SARS-CoV-2 , Volatile Organic Compounds/analysis
2.
Non-conventional in English | National Technical Information Service, Grey literature | ID: grc-753592

ABSTRACT

Category A and B biothreat agents are deemed to be of great concern by the US Centers for Disease Control and Prevention (CDC) and include the bacteria Francisella tularensis, Yersinia pestis, Burkholderia mallei, and Brucella species. Underscored by the impact of the 2020 SARSCoV-2 outbreak, 2016 Zika pandemic, 2014 Ebola outbreak, 2001 anthrax letter attacks, and 1984 Rajneeshee Salmonella attacks, the threat of future epidemics/pandemics and/or terrorist/criminal use of pathogenic organisms warrants continued exploration and development of both classic and alternative methods of detecting biothreat agents. Volatile organic compounds (VOCs) comprise a large and highly diverse group of carbon-based molecules, generally related by their volatility at ambient temperature. Recently, the diagnostic potential of VOCs has been realized, as correlations between the microbial VOC metabolome and specific bacterial pathogens have been identified. Herein, we describe the use of microbial VOC profiles as fingerprints for the identification of biothreat-relevant microbes, and for differentiating between a kanamycin susceptible and resistant strain. Additionally, we demonstrate microbial VOC profiling using a rapid-throughput VOC metabolomics method we refer to as simultaneous multifiber headspace solid-phase microextraction (simultihSPME). Finally, through VOC analysis, we illustrate a rapid non-invasive approach to the diagnosis of BALB/c mice infected with either F. tularensis SCHU S4 or Y. pestis CO92.

3.
Biomed Chromatogr ; 36(6): e5365, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1739127

ABSTRACT

Favipiravir is a potential antiviral medication that has been recently licensed for Covid-19 treatment. In this work, a gadolinium-based magnetic ionic liquid was prepared and used as an extractant in dispersive liquid-liquid microextraction (DLLME) of favipiravir in human plasma. The high enriching ability of DLLME allowed the determination of favipiravir in real samples using HPLC/UV with sufficient sensitivity. The effects of several variables on extraction efficiency were investigated, including type of extractant, amount of extractant, type of disperser and disperser volume. The maximum enrichment was attained using 50 mg of the Gd-magnetic ionic liquid (MIL) and 150 µl of tetrahydrofuran. The Gd-based MIL could form a supramolecular assembly in the presence of tetrahydrofuran, which enhanced the extraction efficiency of favipiravir. The developed method was validated according to US Food and Drug Administration bioanalytical method validation guidelines. The coefficient of determination was 0.9999, for a linear concentration range of 25 to 1.0 × 105  ng/ml. The percentage recovery (accuracy) varied from 99.83 to 104.2%, with RSD values (precision) ranging from 4.07 to 11.84%. The total extraction time was about 12 min and the HPLC analysis time was 5 min. The method was simple, selective and sensitive for the determination of favipiravir in real human plasma.


Subject(s)
COVID-19 , Ionic Liquids , Liquid Phase Microextraction , Amides , COVID-19/drug therapy , Chromatography, High Pressure Liquid/methods , Furans , Gadolinium , Humans , Liquid Phase Microextraction/methods , Magnetic Phenomena , Pyrazines
4.
Anal Chim Acta ; 1203: 339650, 2022 Apr 22.
Article in English | MEDLINE | ID: covidwho-1729460

ABSTRACT

Because of the coronavirus pandemic, hydroalcoholic gels have become essential products to prevent the spread of COVID-19. This research aims to develop a simple, fast and sustainable microextraction methodology followed by gas chromatography tandem mass spectrometry (GC-MS/MS) to analyze simultaneously 60 personal care products (PCPs) including fragrances allergens, synthetic musks, preservatives and plasticizers in hand sanitizers. Micro-matrix-solid-phase dispersion (µMSPD) and solid-phase microextraction (SPME) were compared with the aim of obtaining high sensitivity and sample throughput. SPME demonstrated higher efficiency being selected as sample treatment. Different dilutions of the sample in ultrapure water were assessed to achieve high sensitivity but, at the same time, to avoid or minimize matrix effect. The most critical parameters affecting SPME (fibre coating, extraction mode and temperature) were optimized by design of experiments (DOE). The method was successfully validated in terms of linearity, precision and accuracy, obtaining recovery values between 80 and 112% for most compounds with relative standard deviation (RSD) values lower than 10%. External calibration using standards prepared in ultrapure water demonstrated suitability due to the absence of matrix effect. Finally, the simple, fast and high throughput method was applied to the analysis of real hydroalcoholic gel samples. Among the 60 target compounds, 39 of them were found, highlighting the high number of fragrance allergens, at concentrations ranging between 0.01 and 217 µg g-1. Most of the samples were not correctly labelled attending cosmetic Regulation (EU) No 1223/2009, and none of them followed the World Health Organization (WHO) recommendation for hand sanitizers formulation.


Subject(s)
COVID-19 , Cosmetics , Hand Sanitizers , Cosmetics/analysis , Gas Chromatography-Mass Spectrometry/methods , Gels , Hand Sanitizers/analysis , Humans , Pandemics , Solid Phase Microextraction/methods , Tandem Mass Spectrometry/methods
5.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1189: 123087, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1587335

ABSTRACT

Favipiravir is a promising antiviral agent that has been recently approved for treatment of COVID-19 infection. In this study, a menthol-assisted homogenous liquid-liquid microextraction method has been developed for favipiravir determination in human plasma using HPLC/UV. The different factors that could affect the extraction efficiency were studied, including extractant type, extractant volume, menthol amount and vortex time. The optimum extraction efficiency was achieved using 300 µL of tetrahydrofuran, 30 mg of menthol and vortexing for 1 min before centrifuging the sample for 5 min at 3467g. Addition of menthol does not only induce phase separation, but also helps to form reverse micelles to facilitate extraction. The highly polar favipiravir molecules would be incorporated into the hydrophilic core of the formed reverse micelle to be extracted by the non-polar organic extractant. The method was validated according to the FDA bioanalytical method guidelines. The developed method was found linear in the concentration range of 0.1 to 100 µg/mL with a coefficient of determination of 0.9992. The method accuracy and precision were studied by calculating the recovery (%) and the relative standard deviation (%), respectively. The recovery (%) was in the range of 97.1-103.9%, while the RSD (%) values ranged between 2.03 and 8.15 %. The developed method was successfully applied in a bioequivalence study of Flupirava® 200 mg versus Avigan® 200 mg, after a single oral dose of favipiravir administered to healthy adult volunteers. The proposed method was simple, cheap, more eco-friendly and sufficiently sensitive for biomedical application.


Subject(s)
Amides/isolation & purification , Antiviral Agents/isolation & purification , COVID-19/drug therapy , Liquid Phase Microextraction/methods , Pyrazines/isolation & purification , Amides/administration & dosage , Amides/blood , Antiviral Agents/administration & dosage , Antiviral Agents/blood , COVID-19/blood , COVID-19/virology , Chromatography, High Pressure Liquid/methods , Humans , Liquid Phase Microextraction/instrumentation , Menthol/chemistry , Pyrazines/administration & dosage , Pyrazines/blood , SARS-CoV-2/drug effects , SARS-CoV-2/physiology
6.
J Sep Sci ; 44(9): 1961-1968, 2021 May.
Article in English | MEDLINE | ID: covidwho-1527448

ABSTRACT

In this study, a lab-made parallel single-drop microextraction methodology using the magnetic ionic liquid trihexyltetradecylphosphonium tetrachloromanganate (II) as extraction solvent was developed to determine the pesticides tebuconazole, pendimethalin, dichlorodiphenyltrichloroethane, and dichlorodiphenyldichloroethylene in human urine samples. The experimental setup consisted of a 96-well plate system containing a set of magnetic pins that allowed for the manipulation of up to 96 samples simultaneously, providing an enhanced drop stability compared to traditional single-drop microextraction approaches. The optimal conditions employed 5.38 ± 0.55 mg of extraction solvent, 1.5 mL of diluted urine samples (1:10), extraction time of 130 min, and subsequent dilution in 20 µL of acetonitrile. The method exhibited satisfactory analytical performance, with limits of detection of 7.5 µg/L for all analytes and coefficients of determination higher than 0.9955. Intraday and interday precisions ranged from 3 to 17% (n = 3) and 15 to 18% (n = 9), respectively, with relative recovery of analytes ranging from 70 to 122%. The method proposed was successfully applied in two human urine samples and no sign of the analytes was detected. The results demonstrated that the proposed method allowed for cost-effective and high-throughput methodology to be explored as a valuable tool in bioanalytical applications.


Subject(s)
Biological Monitoring/methods , Liquid Phase Microextraction/methods , Pesticides , COVID-19 , Humans , Limit of Detection , Pesticides/analysis , Pesticides/urine
7.
J Pharmacol Toxicol Methods ; 113: 107130, 2022.
Article in English | MEDLINE | ID: covidwho-1475116

ABSTRACT

In the present study, a novel analytical method for the determination of hydroxychloroquine sulfate in human serum and urine samples was established. One step derivatization and dispersive liquid-liquid microextraction (DLLME) was developed for quantitative determination of hydroxychloroquine sulfate in aqueous samples. Hydroxychloroquine sulfate was first hydrolyzed and converted to its benzoate derivative by adding benzoyl chloride in chloroform which also served as extraction solvent. Significant parameters such as type/volume of extraction and dispersive solvents, concentration/volume of sodium hydroxide, type/period of mixing and concentration of derivatizing agent were carefully optimized by one variable at a time approach. Under the optimum DLLME conditions, limit of detection (LOD), quantitation (LOQ) and dynamic range were calculated as 35.2, 117.2 and 96-1980 µg/kg (ppb), respectively. Recovery studies were conducted by spiked human serum and urine samples and the results were ranged between 93 and 107% with low standard deviations. Developed method can be easily used in hydroxychloroquine sulfate based SARS-CoV-2 and malaria treatment studies.


Subject(s)
COVID-19 , Liquid Phase Microextraction , COVID-19/drug therapy , Gas Chromatography-Mass Spectrometry , Humans , Hydroxychloroquine , Limit of Detection , SARS-CoV-2 , Solvents
8.
Molecules ; 26(8)2021 Apr 07.
Article in English | MEDLINE | ID: covidwho-1302417

ABSTRACT

Two new ultra-high performance liquid chromatography (UHPLC) methods for analyzing 21 selected antivirals and their metabolites were optimized, including sample preparation step, LC separation conditions, and tandem mass spectrometry detection. Micro-solid phase extraction in pipette tips was used to extract antivirals from the biological material of Hanks balanced salt medium of pH 7.4 and 6.5. These media were used in experiments to evaluate the membrane transport of antiviral drugs. Challenging diversity of physicochemical properties was overcome using combined sorbent composed of C18 and ion exchange moiety, which finally allowed to cover the whole range of tested antivirals. For separation, reversed-phase (RP) chromatography and hydrophilic interaction liquid chromatography (HILIC), were optimized using extensive screening of stationary and mobile phase combinations. Optimized RP-UHPLC separation was carried out using BEH Shield RP18 stationary phase and gradient elution with 25 mmol/L formic acid in acetonitrile and in water. HILIC separation was accomplished with a Cortecs HILIC column and gradient elution with 25 mmol/L ammonium formate pH 3 and acetonitrile. Tandem mass spectrometry (MS/MS) conditions were optimized in both chromatographic modes, but obtained results revealed only a little difference in parameters of capillary voltage and cone voltage. While RP-UHPLC-MS/MS exhibited superior separation selectivity, HILIC-UHPLC-MS/MS has shown substantially higher sensitivity of two orders of magnitude for many compounds. Method validation results indicated that HILIC mode was more suitable for multianalyte methods. Despite better separation selectivity achieved in RP-UHPLC-MS/MS, the matrix effects were noticed while using both chromatographic modes leading to signal enhancement in RP and signal suppression in HILIC.


Subject(s)
Antiviral Agents/pharmacokinetics , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Solid Phase Microextraction , Tandem Mass Spectrometry , Antiviral Agents/chemistry , Drug Monitoring , Humans , Reproducibility of Results
9.
Molecules ; 26(12)2021 Jun 12.
Article in English | MEDLINE | ID: covidwho-1282536

ABSTRACT

This study aimed at an experimental design of response surface methodology (RSM) in the optimization of the dominant volatile fraction of Greek thyme honey using solid-phase microextraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). For this purpose, a multiple response optimization was employed using desirability functions, which demand a search for optimal conditions for a set of responses simultaneously. A test set of eighty thyme honey samples were analyzed under the optimum conditions for validation of the proposed model. The optimized combination of isolation conditions was the temperature (60 °C), equilibration time (15 min), extraction time (30 min), magnetic stirrer speed (700 rpm), sample volume (6 mL), water: honey ratio (1:3 v/w) with total desirability over 0.50. It was found that the magnetic stirrer speed, which has not been evaluated before, had a positive effect, especially in combination with other factors. The above-developed methodology proved to be effective in the optimization of isolation of specific volatile compounds from a difficult matrix, like honey. This study could be a good basis for the development of novel RSM for other monofloral honey samples.


Subject(s)
Honey/analysis , Solid Phase Microextraction/methods , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods , Greece , Thymus Plant/metabolism
10.
J Pharmacol Toxicol Methods ; 108: 106949, 2021.
Article in English | MEDLINE | ID: covidwho-1045104

ABSTRACT

A vortex assisted spraying based fine droplet formation liquid phase microextraction (VA-SFDF-LPME) method was developed to determine chloroquine phosphate at trace levels in human serum, urine and saliva samples by gas chromatography-mass spectrometry (GC-MS) with single quadrupole mass analyzer. In the first part, several liquid phase microextraction (LPME) and magnetic solid phase extraction (MSPE) methods were compared to each other in order to observe their extraction ability for the analyte. VA-SFDF-LPME method was selected as an efficient and easy extraction method due to its higher extraction efficiency. Optimization studies were carried out for the parameters such as extraction solvent type, sodium hydroxide volume/concentration, sample volume, spraying number and mixing type/period. Tukey's method based on post hoc test was applied to all experimental data for the selection of optimum values. Optimum extraction parameters were found to be 12 mL initial sample volume, two sprays of dichloromethane, 0.75 mL of 60 g/kg sodium hydroxide and 15 s vortex. Under the optimum conditions, limit of detection and quantification (LOD and LOQ) were calculated as 2.8 and 9.2 µg/kg, respectively. Detection power of the GC-MS system was increased by approximately 317 folds with the developed extraction/preconcentration method. The applicability and accuracy of the proposed method was evaluated by spiking experiments and percent recovery results for human urine, serum and saliva samples were found in the range of 90.9% and 114.0% with low standard deviation values (1.9-9.4).


Subject(s)
Chloroquine , Liquid Phase Microextraction , Chloroquine/analogs & derivatives , Gas Chromatography-Mass Spectrometry , Humans , Limit of Detection , Saliva
11.
J Pharm Anal ; 11(3): 278-283, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1056958

ABSTRACT

A rapid, accurate, and sensitive analytical method, ultrasonication-assisted spraying based fine droplet formation-liquid phase microextraction-gas chromatography-mass spectrometry (UA-SFDF-LPME-GC-MS), was proposed for the determination of trace amounts of hydroxychloroquine sulfate in human serum, urine, and saliva samples. To determine the best extraction strategy, several liquid and solid phase extraction methods were investigated for their efficiencies in isolation and preconcentration of hydroxychloroquine sulfate from biological matrices. The UA-SFDF-LPME method was determined to be the best extraction method as it was operationally simple and provided accurate results. Variables such as the extraction solvent, spraying number, sodium hydroxide concentration and volume, sample volume, mixing method, and mixing period were optimized for the proposed method using the one-variable-at-a-time approach. In addition, Tukey's method based on a post hoc comparison test was employed to evaluate the significant difference between the parameters inspected. After the optimization studies, the limit of detection (LOD) and limit of quantification (LOQ) were determined to be 0.7 and 2.4 µg/kg, respectively. The sensitivity of the GC-MS system based on the LOD was enhanced approximately 440-fold when the UA-SFDF-LPME method was employed. Spiking experiments were also conducted for the human serum, urine, and saliva samples to determine the applicability and accuracy of the proposed method. Recoveries for the human serum, urine, and saliva samples were found to be in the ranges of 93.9%-101.7%, 95.2%-105.0%, and 93.1%-102.3%, respectively. These results were satisfactory and indicated that the hydroxychloroquine sulfate level in the above biological samples could be analyzed using the proposed method.

12.
Process Biochem ; 102: 150-156, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-989037

ABSTRACT

To tackle the harmful consequences of the widespread COVID-19 pandemic, a broad-spectrum anti-viral drug remdesivir (RDV) has gained the utmost attention recently due to its promising application in treating COVID-19 patients. However, a fast and sensitive analytical methodology is important to monitor RDV drug profile in human plasma for pharmacokinetics (PK) and therapeutic drug monitoring (TDM). In this study, we demonstrate an improved vortex-assisted salt-induced liquid-liquid microextraction (VA-SI-LLME) technique coupled with UHPLC-PDA and UHPLC-MS/MS for rapid determination of RDV in human plasma. This technique involves simple one-step protein precipitation with hydrochloric acid and subsequent extraction with acetonitrile for analysis. Under the optimal VA-SI-LLME conditions (500 µL of acetonitrile with 2.5 g ammonium sulfate under 2 min vortex extraction), method validation results indicated an excellent correlation coefficient of 0.9969 for UHPLC-PDA (monitored at 254 nm) and 0.9990 for UHPLC-MS/MS (monitored at electrospray ionization with + ion mode transitions of m/z 603.1→m/z 402.20 and m/z 603.1→ m/z 199.90). The detection and quantification limits were 1.5 and 5 ng/mL for UHPLC/PDA, and 0.3 and 1 ng/mL for UHPLC-MS/MS, respectively. The developed method showed excellent extraction recoveries between 90.79-116.74 % and 85.68-101.34 % with intraday and interday precision ≤ 9.59 for both methods. These results proved that the developed method is a simple, fast, and sensitive analytical method that can be applied as a standard analytical tool for PK and TDM studies of RDV in clinical trials during the current worldwide outbreak.

SELECTION OF CITATIONS
SEARCH DETAIL