Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2326896

ABSTRACT

A method for determining the presence of SARS-CoV-2 RNA in HEPA filters from portable air cleaners (PACs) have been developed and validated. Herein, a monitoring survey was conducted for 13 weeks in three indoor environments, school, nursery and a household of a socio-sanitary center in Ciudad Real, Spain. In this study, we employed environmental monitoring by RT-PCR of the presence of SARS-CoV-2 in HEPA filters and other surfaces of these indoor spaces for a selective screening in asymptomatic population groups. The aim was to limit outbreaks in an early stage. Only one HEPA filter tested positive in the socio-sanitary center. After analysis by RT-PCR of SARS-CoV-2 in residents and healthcare workers, one worker tested positive. Therefore, this study provides direct evidence of virus-containing aerosols trapped in HEPA filters and the possibility of using these PACs for environmental monitoring of SARS-CoV-2 while they remove airborne aerosols and trap the virus. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

2.
Profilakticheskaya Meditsina ; 26(4):43-50, 2023.
Article in Russian | EMBASE | ID: covidwho-2326459

ABSTRACT

The number of people with long-term consequences of COVID-19 is increasing worldwide. The long-term prognosis for patients remains poorly understood. Objective. To study cardiometabolic and psychocognitive features in comorbid elderly patients with atrial fibrillation (AF), de-pending on the presence of post-COVID syndrome (PCS). Material and methods. The observational analytical cohort study included 223 patients with AF and comorbidity (coronary artery disease, hypertension, obesity, type 2 diabetes mellitus) aged 60-74, who were divided into two groups: group 1 included 123 patients without COVID-19 and group 2 included 110 patients with a history of COVID-19 and the presence of PCS. The study evaluated laboratory and instrumental tests, and a general clinical study assessing psychocognitive disorders using the SPMSQ and HADS questionnaires was conducted. Results and discussion. In COVID-19 survivors, compared with patients of group 1, there were more pronounced atherogenic changes in total cholesterol (TC) (p=0.003), low-density lipoprotein cholesterol (p<0.001), and triglycerides (p=0.011). Lower dia-stolic blood pressure was found in COVID-19 survivors (p<0.001). In addition, patients in group 2 had higher median pulse pressure (p<0.001) and heart rate (p<0.001). In group 2 patients, a larger ascending aorta diameter was observed (p<0.001). The anx-iety-depressive syndrome was more common in COVID-19 survivors with comorbidities, and a statistically significant difference was found in clinical anxiety (24%, p=0.041) and subclinical depression (21%, p=0.015). When assessing cognitive function, mod-erate cognitive impairment was detected in 22% (p=0.005) of patients with PCS and severe cognitive impairment in 2% (p=0.007). Conclusion. In comorbid elderly patients with the post-COVID syndrome, a high prevalence of psychocognitive disorders and adverse cardiometabolic changes were observed, supporting the need for long-term monitoring of the general clinical condition and psychocognitive status of COVID-19 survivors.Copyright © 2023, Media Sphera Publishing Group. All rights reserved.

3.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2325966

ABSTRACT

This study aimed to evaluate the feasibility of using low-cost solutions to monitor and mitigate PM2.5 and PM10 concentrations in nursery and primary schools in Porto (Portugal). Three periods were considered: i) early 2020 (before COVID-19 pandemic), ii) early 2021 (during COVID-19 pandemic, with mitigation measures to prevent SARS-CoV-2 spread);and iii) in the middle of 2021 (additionally using a low-cost portable air cleaner). PM2.5 and PM10 were continuously monitored with a low-cost sensing device for at least two consecutive days in five classrooms. In general, the lowest PM concentrations were observed in the third period. Concentrations reduced up to 63% from the second to the third period. The application of low-cost solutions for monitoring and mitigating PM levels seems to be an effective tool for managing indoor air in schools. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

4.
2nd International Conference for Innovation in Technology, INOCON 2023 ; 2023.
Article in English | Scopus | ID: covidwho-2325762

ABSTRACT

During the COVID-19 pandemic the healthcare facilities all over world collapsed due to shortage of essential biomedical devices. ECG devices are one of those crucial instruments required for tracing electrical activities of heart. Due to the high cost of gold standard ECG devices used in the medical industries, the availability of on-demand ECG devices was not accessible to everyone. Thus, the need of portable, low cost, on-demand ECG device was needful at the earliest. In this paper we propose a novel, versatile, 3-lead, IoT enabled, LM324/LM741 operational amplifiers in instrumentation amplifier configuration Electrocardiogram machine that is aimed towards providing accurate information about the electrical activity of our heart in real time. In this attempt, we have come up with an analogue circuit design consisting of multiple operational amplifier IC based fundamental circuit blocks. The prototype is designed in such a way that the output of ECG can be visualised worldwide using IoT. © 2023 IEEE.

5.
Trends in food science & technology. ; 129:Not Available, 2022.
Article in English | EuropePMC | ID: covidwho-2325683

ABSTRACT

Agri-food safety has been considered as one of the most important public concerns worldwide. From farm to table, food crops and foods are extremely vulnerable to the contamination by a variety of pollutants from their growth and processing. Moreover, the SARS-CoV-2 detected in the food supply chain during COVID-19 pandemic has posed a greater challenge for rapid and on-site detection of agri-food contaminants in complex and volatile environments. Therefore, the development of rapid, accurate, and on-site detection technologies and portable detection devices is of great importance to ensure the agri-food security. This review comprehensively summarized the recent advances on the construction of CRISPR/Cas systems-based biosensing technologies and their portable detection devices, as well as their promising applications in the field of agri-food safety. First of all, the classification and working principles of CRISPR/Cas systems were introduced. Then, the latest advances on the CRISPR/Cas system-based on-site detection technologies and portable detection devices were also systematically summarized. Most importantly, the state-of-the-art applications of CRISPR/Cas systems-based on-site detection technologies and portable detection devices in the fields of agri-food safety were comprehensively summarized. Impressively, the future opportunities and challenges in this emerging and promising field were proposed. Emerging CRISPR/Cas system-based on-site detection technologies have showed a great potential in the detection of agri-food safety. Impressively, the integration of CRISPR/Cas systems-based biosensing technologies with portable detection devices (e.g., nanopore-based detection devices, lateral flow assay, smartphone-based detection devices, and microfluidic devices) is very promising for the on-site detection of agri-food contaminants. Additionally, CRISPR/Cas system-based biosensing technologies can be further integrated with much more innovative technologies for the development of novel detection platforms to realize the more reliable on-site detection of agri-food safety.

6.
Sustainability ; 15(9):7172, 2023.
Article in English | ProQuest Central | ID: covidwho-2312452
12.
Build Simul ; 16(5): 795-811, 2023.
Article in English | MEDLINE | ID: covidwho-2298790

ABSTRACT

COVID-19 and its impact on society have raised concerns about scaling up mechanical ventilation (MV) systems and the energy consequences. This paper attempted to combine MV and portable air cleaners (PACs) to achieve acceptable indoor air quality (IAQ) and energy reduction in two scenarios: regular operation and mitigating the spread of respiratory infectious diseases (RIDs). We proposed a multi-objective optimization method that combined the NSGA-II and TOPSIS techniques to determine the total equivalent ventilation rate of the MV-PAC system in both scenarios. The concentrations of PM2.5 and CO2 were primary indicators for IAQ. The modified Wells-Riley equation was adopted to predict RID transmissions. An open office with an MV-PAC system was used to demonstrate the method's applicability. Meanwhile, a field study was conducted to validate the method and evaluate occupants' perceptions of the MV-PAC system. Results showed that optimal solutions of the combined system can be obtained based on various IAQ requirements, seasons, outdoor conditions, etc. For regular operation, PACs were generally prioritized to maintain IAQ while reducing energy consumption even when outdoor PM2.5 concentration was high. MV can remain constant or be reduced at low occupancies. In RID scenarios, it is possible to mitigate transmissions when the quanta were < 48 h-1. No significant difference was found in the subjective perception of the MV and PACs. Moreover, the effects of infiltration on the optimal solution can be substantial. Nonetheless, our results suggested that an MV-PAC system can replace the MV system for offices for daily use and RID mitigation. Electronic Supplementary Material ESM: The Appendix is available in the online version of this article at 10.1007/s12273-023-0999-z.

13.
Cureus ; 15(3): e36330, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2297059

ABSTRACT

OBJECTIVE: In the present study, we evaluated the role of portable chest radiographs in critically ill patients with COVID-19 pneumonia in whom computed tomography (CT) of the chest was not feasible. METHODS: A retrospective chest X-ray study of patients under investigation for COVID-19 was performed in our dedicated COVID hospital (DCH) during the exponential growth phase of the COVID-19 outbreak (August-October, 2020). A total of 562 on-bed chest radiographs were examined comprising 289 patients (critically ill who couldn't be mobilized for CT) along with positive reverse transcription-polymerase chain reaction (RT-PCR) tests. We categorized each chest radiograph as progressive, with changes, or improvement in appearance for COVID-19, utilizing well-documented COVID-19 imaging patterns. RESULTS:  In our study, portable radiographs provided optimum image quality for diagnosing pneumonia, in critically ill patients. Although less informative than CT, nevertheless radiographs detected serious complications like pneumothorax or lung cavitation and estimated the evolution of pneumonia. CONCLUSION: A portable chest X-ray is a simple but reliable alternative for critically ill SARS-CoV-2 patients who could not undergo chest CT. With the help of portable chest radiographs, we could monitor the severity of the disease as well as different complications with minimal radiation exposure which would help in identifying the prognosis of the patient and thus help in medical management.

14.
Sensors (Basel) ; 23(8)2023 Apr 13.
Article in English | MEDLINE | ID: covidwho-2304921

ABSTRACT

Methods based on nucleic acid detection are currently the most commonly used technique in COVID-19 diagnostics. Although generally considered adequate, these methods are characterised by quite a long time-to-result and the necessity to prepare the material taken from the examined person-RNA isolation. For this reason, new detection methods are being sought, especially those characterised by the high speed of the analysis process from the moment of sampling to the result. Currently, serological methods of detecting antibodies against the virus in the patient's blood plasma have attracted much attention. Although they are less precise in determining the current infection, such methods shorten the analysis time to several minutes, making it possible to consider them a promising method for screening tests in people with suspected infection. The described study investigated the feasibility of a surface plasmon resonance (SPR)-based detection system for on-site COVID-19 diagnostics. A simple-to-use portable device was proposed for the fast detection of anti-SARS-CoV-2 antibodies in human plasma. SARS-CoV-2-positive and -negative patient blood plasma samples were investigated and compared with the ELISA test. The receptor-binding domain (RBD) of spike protein from SARS-CoV-2 was selected as a binding molecule for the study. Then, the process of antibody detection using this peptide was examined under laboratory conditions on a commercially available SPR device. The portable device was prepared and tested on plasma samples from humans. The results were compared with those obtained in the same patients using the reference diagnostic method. The detection system is effective in the detection of anti-SARS-CoV-2 with the detection limit of 40 ng/mL. It was shown that it is a portable device that can correctly examine human plasma samples within a 10 min timeframe.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Surface Plasmon Resonance , COVID-19 Testing , Antibodies, Viral
15.
Biosensors (Basel) ; 12(1)2021 Dec 26.
Article in English | MEDLINE | ID: covidwho-2287828

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has led to a global pandemic with a high spread rate and pathogenicity. Thus, with limited testing solutions, it is imperative to develop early-stage diagnostics for rapid and accurate detection of SARS-CoV-2 to contain the rapid transmission of the ongoing COVID-19 pandemic. In this regard, there remains little knowledge about the integration of the CRISPR collateral cleavage mechanism in the lateral flow assay and fluorophotometer. In the current study, we demonstrate a CRISPR/Cas12a-based collateral cleavage method for COVID-19 diagnosis using the Cas12a/crRNA complex for target recognition, reverse transcription loop-mediated isothermal amplification (RT-LAMP) for sensitivity enhancement, and a novel DNA capture probe-based lateral flow strip (LFS) or real-time fluorescence detector as the parallel system readout facility, termed CRICOLAP. Our novel approach uses a customized reporter that hybridizes an optimized complementary capture probe fixed at the test line for naked-eye result readout. The CRICOLAP system achieved ultra-sensitivity of 1 copy/µL in ~32 min by portable real-time fluorescence detection and ~60 min by LFS. Furthermore, CRICOLAP validation using 60 clinical nasopharyngeal samples previously verified with a commercial RT-PCR kit showed 97.5% and 100% sensitivity for S and N genes, respectively, and 100% specificity for both genes of SARS-CoV-2. CRICOLAP advances the CRISPR/Cas12a collateral cleavage result readout in the lateral flow assay and fluorophotometer, and it can be an alternative method for the decentralized field-deployable diagnosis of COVID-19 in remote and limited-resource locations.


Subject(s)
COVID-19 Testing , COVID-19 , CRISPR-Cas Systems , COVID-19/diagnosis , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Viral , SARS-CoV-2 , Sensitivity and Specificity
18.
Information Technology & People ; 36(2):701-733, 2023.
Article in English | ProQuest Central | ID: covidwho-2257354
SELECTION OF CITATIONS
SEARCH DETAIL