Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
Adv Appl Microbiol ; 120: 79-111, 2022.
Article in English | MEDLINE | ID: covidwho-1926132


The term Gain-of-Function (GoF) describes the gain of new functions by organisms through genetic changes, which can naturally occur or by experimental genetic modifications. Gain-of-Function research on viruses is enhancing transmissibility, virus replication, virulence, host range, immune evasion or drug and vaccine resistance to get insights into the viral mechanisms, to create and analyze animal models, to accelerate drug and vaccine development and to improve pandemic preparedness. A subset is the GoF research of concern (GOFROC) on enhanced potentially pandemic pathogens (ePPPs) that could be harmful for humans. A related issue is the military use of research as dual-use research of concern (DURC). Influenza and coronaviruses are main research targets, because they cause pandemics by airborne infections. Two studies on avian influenza viruses initiated a global debate and a temporary GoF pause in the United States which ended with a new regulatory framework in 2017. In the European Union and China, GoF and DURC are mainly covered by the legislation for laboratory safety and genetically modified organisms. After the coronavirus outbreaks, the GoF research made significant advances, including analyses of modified MERS-like and SARS-like viruses and the creation of synthetic SARS-CoV-2 viruses as a platform to generate mutations. The GoF research on viruses will still play an important role in future, but the need to clarify the differences and overlaps between GoF research, GOFROC and DURC and the need for specialized oversight authorities are still debated.

COVID-19 , Influenza, Human , Animals , Gain of Function Mutation , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics/prevention & control , SARS-CoV-2/genetics , United States
Vaccines (Basel) ; 8(2)2020 Jun 10.
Article in English | MEDLINE | ID: covidwho-1453292


This study describes a double-blind randomized placebo-controlled phase I clinical trial in healthy adults of a new potential pandemic H7N9 live attenuated influenza vaccine (LAIV) based on the human influenza virus of Yangtze River Delta hemagglutinin lineage ( Identifier: NCT03739229). Two doses of H7N9 LAIV or placebo were administered intranasally to 30 and 10 subjects, respectively. The vaccine was well-tolerated and not associated with increased rates of adverse events or with any serious adverse events. Vaccine virus was detected in nasal swabs during the 6 days after vaccination or revaccination. A lower frequency of shedding was observed after the second vaccination. Twenty-five clinical viral isolates obtained after the first and second doses of vaccine retained the temperature-sensitive and cold-adapted phenotypic characteristics of LAIV. There was no confirmed transmission of the vaccine strain from vaccinees to placebo recipients. After the two H7N9 LAIV doses, an immune response was observed in 96.6% of subjects in at least one of the assays conducted.