Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
Energy Economics ; 117, 2023.
Article in English | Scopus | ID: covidwho-2243482


The contribution of commodity risks to the systemic risk is assessed in this paper through a novel approach that relies on the stochastic property of concordance ordering of CoVaR. Considering the period that spans from 2005 to 2022 and the VIX as the proxy for the stability of the financial system, we build the stochastic ordering of systemic risk for 35 commodities belonging to four sectors: Agriculture, Energy, Industrial Metals, and Precious Metals. The estimates of the ΔCoVaR signal that contagion effects from commodity markets to the financial system have been stronger during the years 2017–2019. Backtests validate CoVaR as a more resilient risk measure than the VaR, especially during periods of market turmoils. The stochastic ordering of CoVaR shows that severe losses (downside risk) in commodity markets tend to exacerbate systemic financial distress more than gains (upside risk). Commodity risks arising from WTI and EUA are threatening triggers for systemic risk. In contrast, the financial system is less vulnerable to a broader range of scenarios arising from fluctuations in Gold prices. As top contributors to the systemic risk, among the sectors we find Energy and Precious Metals with respect to upside risk and downside risk. The Covid-19 crisis has deeply amplified the systemic influence arising from the downside risk of WTI, Gasoline, and Natural Gas UK and has confirmed the safe-haven role of Gold. © 2022 Elsevier B.V.

Annals of Operations Research ; : 30, 2022.
Article in English | Web of Science | ID: covidwho-1627732


In this paper, we examine extreme spillovers among the realized volatility of various energy, metals, and agricultural commodities over the period from September 23, 2008, to June 1, 2020. Using high-frequency (5-min) price data on commodity futures, we compute daily realized volatility and then apply quantile-based connectedness measures. The results show that the connectedness measures estimated at the lower and upper quantiles are much higher than those estimated at the median, implying that realized volatility shocks circulate more intensely during extreme events relative to normal periods, which endangers the stability of the system of volatility connectedness under extreme events such as the COVID19 outbreak. There is evidence of a strong asymmetry between the behaviour of volatility spillovers in lower and upper quantiles, given that the connectedness measures estimated at the upper quantile are the highest. The main results are robust to rolling window size and other alternative choices. Our analyses matter to investors and policy makers who are concerned with the stability of commodity markets.

Entropy (Basel) ; 22(8)2020 Jul 30.
Article in English | MEDLINE | ID: covidwho-750707


The main purpose of our paper is to evaluate the impact of the COVID-19 pandemic on randomness in volatility series of world major markets and to examine its effect on their interconnections. The data set includes equity (Bitcoin and Standard and Poor's 500), precious metals (Gold and Silver), and energy markets (West Texas Instruments, Brent, and Gas). The generalized autoregressive conditional heteroskedasticity model is applied to the return series. The wavelet packet Shannon entropy is calculated from the estimated volatility series to assess randomness. Hierarchical clustering is employed to examine interconnections between volatilities. We found that (i) randomness in volatility of the S&P500 and in the volatility of precious metals were the most affected by the COVID-19 pandemic, while (ii) randomness in energy markets was less affected by the pandemic than equity and precious metal markets. Additionally, (iii) we showed an apparent emergence of three volatility clusters: precious metals (Gold and Silver), energy (Brent and Gas), and Bitcoin and WTI, and (iv) the S&P500 volatility represents a unique cluster, while (v) the S&P500 market volatility was not connected to the volatility of Bitcoin, energy, and precious metal markets before the pandemic. Moreover, (vi) the S&P500 market volatility became connected to volatility in energy markets and volatility in Bitcoin during the pandemic, and (vii) the volatility in precious metals is less connected to volatility in energy markets and to volatility in Bitcoin market during the pandemic. It is concluded that (i) investors may diversify their portfolios across single constituents of clusters, (ii) investing in energy markets during the pandemic period is appealing because of lower randomness in their respective volatilities, and that (iii) constructing a diversified portfolio would not be challenging as clustering structures are fairly stable across periods.