Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 239
Filter
1.
J Virol ; : e0134122, 2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2097919

ABSTRACT

We observed the interference between two prevalent respiratory viruses, respiratory syncytial virus (RSV) and influenza A virus (IAV) (H1N1), and characterized its molecular underpinnings in alveolar epithelial cells (A549). We found that RSV induces higher levels of interferon beta (IFN-ß) production than IAV and that IFN-ß priming confers higher-level protection against infection with IAV than with RSV. Consequently, we focused on the sequential infection scheme of RSV and then IAV. Using A549 wild-type (WT), IFNAR1 knockout (KO), IFNLR1 KO, and IFNAR1-IFNLR1 double-KO cell lines, we found that both IFN-ß and IFN-λ are necessary for maximum protection against subsequent infection. Immunostaining revealed that preinfection with RSV partitions the cell population into a subpopulation susceptible to subsequent infection with IAV and an IAV-proof subpopulation. Strikingly, the susceptible cells turned out to be those already compromised and efficiently expressing RSV, whereas the bystander, interferon-primed cells are resistant to IAV infection. Thus, virus-virus exclusion at the cell population level is not realized through direct competition for a shared ecological niche (single cell) but rather is achieved with the involvement of specific cytokines induced by the host's innate immune response. IMPORTANCE Influenza A virus (IAV) and respiratory syncytial virus (RSV) are common recurrent respiratory infectants that show a relatively high coincidence. We demonstrated that preinfection with RSV partitions the cell population into a subpopulation susceptible to subsequent infection with IAV and an IAV-proof subpopulation. The susceptible cells are those already compromised and efficiently expressing RSV, whereas the bystander cells are resistant to IAV infection. The cross-protective effect critically depends on IFN-ß and IFN-λ signaling and thus ensues when the proportion of cells preinfected with RSV is relatively low yet sufficient to trigger a pervasive antiviral state in bystander cells. Our study suggests that mild, but not severe, respiratory infections may have a short-lasting protective role against more dangerous respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

2.
Brief Funct Genomics ; 21(6): 423-432, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2087742

ABSTRACT

The elevated levels of inflammatory cytokines have attracted much attention during the treatment of COVID-19 patients. The conclusions of current observational studies are often controversial in terms of the causal effects of COVID-19 on various cytokines because of the confounding factors involving underlying diseases. To resolve this problem, we conducted a Mendelian randomization analysis by integrating the GWAS data of COVID-19 and 41 cytokines. As a result, the levels of 2 cytokines were identified to be promoted by COVID-19 and had unsignificant pleiotropy. In comparison, the levels of 10 cytokines were found to be inhibited and had unsignificant pleiotropy. Among down-regulated cytokines, CCL2, CCL3 and CCL7 were members of CC chemokine family. We then explored the potential molecular mechanism for a significant causal association at a single cell resolution based on single-cell RNA data, and discovered the suppression of CCL3 and the inhibition of CCL3-CCR1 interaction in classical monocytes (CMs) of COVID-19 patients. Our findings may indicate that the capability of COVID-19 in decreasing the chemotaxis of lymphocytes by inhibiting the CCL3-CCR1 interaction in CMs.

3.
Front Immunol ; 13: 967737, 2022.
Article in English | MEDLINE | ID: covidwho-2080146

ABSTRACT

Monocytes are critical cells of the immune system but their role as effectors is relatively poorly understood, as they have long been considered only as precursors of tissue macrophages or dendritic cells. Moreover, it is known that this cell type is heterogeneous, but our understanding of this aspect is limited to the broad classification in classical/intermediate/non-classical monocytes, commonly based on their expression of only two markers, i.e. CD14 and CD16. We deeply dissected the heterogeneity of human circulating monocytes in healthy donors by transcriptomic analysis at single-cell level and identified 9 distinct monocyte populations characterized each by a profile suggestive of specialized functions. The classical monocyte subset in fact included five distinct populations, each enriched for transcriptomic gene sets related to either inflammatory, neutrophil-like, interferon-related, and platelet-related pathways. Non-classical monocytes included two distinct populations, one of which marked specifically by elevated expression levels of complement components. Intermediate monocytes were not further divided in our analysis and were characterized by high levels of human leukocyte antigen (HLA) genes. Finally, we identified one cluster included in both classical and non-classical monocytes, characterized by a strong cytotoxic signature. These findings provided the rationale to exploit the relevance of newly identified monocyte populations in disease evolution. A machine learning approach was developed and applied to two single-cell transcriptome public datasets, from gastrointestinal cancer and Coronavirus disease 2019 (COVID-19) patients. The dissection of these datasets through our classification revealed that patients with advanced cancers showed a selective increase in monocytes enriched in platelet-related pathways. Of note, the signature associated with this population correlated with worse prognosis in gastric cancer patients. Conversely, after immunotherapy, the most activated population was composed of interferon-related monocytes, consistent with an upregulation in interferon-related genes in responder patients compared to non-responders. In COVID-19 patients we confirmed a global activated phenotype of the entire monocyte compartment, but our classification revealed that only cytotoxic monocytes are expanded during the disease progression. Collectively, this study unravels an unexpected complexity among human circulating monocytes and highlights the existence of specialized populations differently engaged depending on the pathological context.


Subject(s)
COVID-19 , Gastrointestinal Neoplasms , Humans , Monocytes , Immunologic Factors/metabolism , Interferons/metabolism , HLA Antigens/metabolism
4.
Viruses ; 14(10)2022 10 16.
Article in English | MEDLINE | ID: covidwho-2071842

ABSTRACT

Over the last three years, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related health crisis has claimed over six million lives and caused USD 12 trillion losses to the global economy. SARS-CoV-2 continuously mutates and evolves with a high basic reproduction number (R0), resulting in a variety of clinical manifestations ranging from asymptomatic infection to acute respiratory distress syndrome (ARDS) and even death. To gain a better understanding of coronavirus disease 2019 (COVID-19), it is critical to investigate the components that cause various clinical manifestations. Single-cell sequencing has substantial advantages in terms of identifying differentially expressed genes among individual cells, which can provide a better understanding of the various physiological and pathological processes. This article reviewed the use of single-cell transcriptomics in COVID-19 research, examined the immune response disparities generated by SARS-CoV-2, and offered insights regarding how to improve COVID-19 diagnosis and treatment plans.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , COVID-19 Testing , Transcriptome , Basic Reproduction Number
5.
Front Immunol ; 13: 920865, 2022.
Article in English | MEDLINE | ID: covidwho-2071086

ABSTRACT

Objectives: To investigate the differences between the vector vaccine ChAdOx1 nCoV-19/AZD1222 (Oxford-AstraZeneca) and mRNA-based vaccine mRNA-1273 (Moderna) in patients with autoimmune rheumatic diseases (AIRD), and to explore the cell-cell interactions between high and low anti-SARS-CoV-2 IgG levels in patients with rheumatic arthritis (RA) using single-cell RNA sequencing (scRNA-seq). Methods: From September 16 to December 10, 2021, we consecutively enrolled 445 participants (389 patients with AIRD and 56 healthy controls), of whom 236 were immunized with AZD1222 and 209 with mRNA-1273. The serum IgG antibodies to the SARS-CoV-2 receptor-binding domain was quantified by electrochemiluminescence immunoassay at 4-6 weeks after vaccination. Moreover, peripheral blood mononuclear cells (PBMCs) were isolated from RA patients at 4-6 weeks after vaccination for scRNA-seq and further analyzed by CellChat. ScRNA-seq of PBMCs samples from GSE201534 in the Gene Expression Omnibus (GEO) database were also extracted for analysis. Results: The anti-SARS-CoV-2 IgG seropositivity rate was 85.34% for AIRD patients and 98.20% for healthy controls. The anti-SARS-CoV-2 IgG level was higher in patients receiving mRNA-1273 than those receiving AZD1222 (ß: 35.25, 95% CI: 14.81-55.68, p=0.001). Prednisolone-equivalent dose >5 mg/day and methotrexate use in AIRD patients, and non-anti-tumor necrosis factor-α biologics and Janus kinase inhibitor use in RA patients were associated with inferior immunogenicity. ScRNA-seq revealed CD16-monocytes were predominant in RA patients with high anti-SARS-CoV2-IgG antibodies, and enriched pathways related to antigen presentation via MHC class II were found. HLA-DRA and CD4 interaction was enhanced in high anti-SARS-CoV2-IgG group. Conclusions: mRNA-1273 and AZD1222 vaccines exhibited differential immunogenicity in AIRD patients. Enriched pathways related to antigen presentation via MHC class II in CD16-monocytes might be associated with higher anti-SARS-CoV2-IgG level in RA patients and further study is warranted.


Subject(s)
Autoimmune Diseases , COVID-19 , Rheumatic Diseases , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Humans , Immunoglobulin G , Leukocytes, Mononuclear , Rheumatic Diseases/drug therapy , SARS-CoV-2 , Sequence Analysis, RNA , mRNA Vaccines
6.
Front Med (Lausanne) ; 9: 915367, 2022.
Article in English | MEDLINE | ID: covidwho-2065563

ABSTRACT

While the biomarkers of COVID-19 severity have been thoroughly investigated, the key biological dynamics associated with COVID-19 resolution are still insufficiently understood. We report a case of full resolution of severe COVID-19 due to convalescent plasma transfusion. Following transfusion, the patient showed fever remission, improved respiratory status, and rapidly decreased viral burden in respiratory fluids and SARS-CoV-2 RNAemia. Longitudinal unbiased proteomic analysis of plasma and single-cell transcriptomics of peripheral blood cells conducted prior to and at multiple times after convalescent plasma transfusion identified the key biological processes associated with the transition from severe disease to disease-free state. These included (i) temporally ordered upward and downward changes in plasma proteins reestablishing homeostasis and (ii) post-transfusion disappearance of a subset of monocytes characterized by hyperactivated Interferon responses and decreased TNF-α signaling. Monitoring specific dysfunctional myeloid cell subsets in peripheral blood may provide prognostic keys in COVID-19.

7.
Front Immunol ; 13: 992787, 2022.
Article in English | MEDLINE | ID: covidwho-2065520

ABSTRACT

The coronavirus disease 2019 pandemic has caused more than 532 million infections and 6.3 million deaths to date. The reactive and neutralizing fully human antibodies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are effective detection tools and therapeutic measures. During SARS-CoV-2 infection, a large number of SARS-CoV-2 reactive and neutralizing antibodies will be produced. Most SARS-CoV-2 reactive and neutralizing fully human antibodies are isolated from human and frequently encoded by convergent heavy-chain variable genes. However, SARS-CoV-2 viruses can mutate rapidly during replication and the resistant variants of neutralizing antibodies easily survive and evade the immune response, especially in the face of such focused antibody responses in humans. Therefore, additional tools are needed to develop different kinds of fully human antibodies to compensate for current deficiency. In this study, we utilized antibody humanized CAMouseHG mice to develop a rapid antibody discovery method and examine the antibody repertoire of SARS-CoV-2 RBD-reactive hybridoma cells derived from CAMouseHG mice by using high-throughput single-cell V(D)J sequencing analysis. CAMouseHG mice were immunized by 28-day rapid immunization method. After electrofusion and semi-solid medium screening on day 12 post-electrofusion, 171 hybridoma clones were generated based on the results of SARS-CoV-2 RBD binding activity assay. A rather obvious preferential usage of IGHV6-1 family was found in these hybridoma clones derived from CAMouseHG mice, which was significantly different from the antibodies found in patients with COVID-19. After further virus neutralization screening and antibody competition assays, we generated a noncompeting two-antibody cocktail, which showed a potent prophylactic protective efficacy against SARS-CoV-2 in cynomolgus macaques. These results indicate that humanized CAMouseHG mice not only provide a valuable platform to obtain fully human reactive and neutralizing antibodies but also have a different antibody repertoire from humans. Thus, humanized CAMouseHG mice can be used as a good complementary tool in discovery of fully human therapeutic and diagnostic antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Humans , Hybridomas/metabolism , Mice , Spike Glycoprotein, Coronavirus
8.
Biol Reprod ; 107(1): 118-134, 2022 07 25.
Article in English | MEDLINE | ID: covidwho-2062863

ABSTRACT

Infertility affects 8-12% of couples globally, and the male factor is a primary cause in ~50% of couples. Male infertility is a multifactorial reproductive disorder, which can be caused by paracrine and autocrine factors, hormones, genes, and epigenetic changes. Recent studies in rodents and most notably in humans using multiomics approach have yielded important insights into understanding the biology of spermatogenesis. Nonetheless, the etiology and pathogenesis of male infertility are still largely unknown. In this review, we summarized and critically evaluated findings based on the use of advanced technologies to compare normal and obstructive azoospermic versus nonobstructive azoospermic men, including whole-genome bisulfite sequencing, single-cell RNA-seq, whole-exome sequencing, and transposase-accessible chromatin using sequencing. It is obvious that the multiomics approach is the method of choice for basic research and clinical studies including clinical diagnosis of male infertility.


Subject(s)
Azoospermia , Infertility, Male , Azoospermia/genetics , Epigenesis, Genetic , Humans , Infertility, Male/genetics , Male , Single-Cell Analysis , Spermatogenesis/genetics
9.
J Allergy Clin Immunol ; 150(4): 739-747, 2022 10.
Article in English | MEDLINE | ID: covidwho-2061405

ABSTRACT

Mast cells (MCs) are widely recognized as central effector cells during type 2 inflammatory reactions and thought to also play a role in innate immune responses, wound healing, and potentially cancer. Circulating progenitor cells mature to MCs in peripheral tissues, where they exhibit phenotypic and functional heterogeneity. This diversity likely originates from differences in MC development imprinted by microenvironmental signals. The advent of single-cell transcriptomics reveals MC diversity beyond differences in proteases that were classically used to identify MC phenotypes. Here, we provide an overview of the current knowledge on MC progenitor differentiation and characteristics, and MC heterogeneity seen in health versus disease, that are drastically advanced through single-cell profiling technologies. This powerful approach can provide detailed cellular maps of tissues to decipher the complex cellular functions and interactions that may lead to identifying candidate factors to target in therapies.


Subject(s)
Hypersensitivity , Transcriptome , Cell Differentiation , Humans , Hypersensitivity/metabolism , Mast Cells/metabolism , Peptide Hydrolases/metabolism , Stem Cells
10.
Cell Biol Toxicol ; 2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2048355

ABSTRACT

Horseshoe bats (Rhinolophus sinicus) might help maintain coronaviruses severely affecting human health, such as severe acute respiratory syndrome coronavirus (SARS-CoV). Bats may be more tolerant of viral infection than other mammals due to their unique immune system, but the exact mechanism remains to be fully explored. During the coronavirus disease 2019 (COVID-19) pandemic, multiple animal species were diseased by coronavirus infection, especially in the respiratory system. Herein, a comparative analysis with single nucleus transcriptomic data of the lungs across four species, including horseshoe bat, cat, tiger, and pangolin, were conducted. The distribution of entry factors for twenty-eight respiratory viruses was characterized for the four species. Our findings might increase our understanding of the immune background of horseshoe bats.

11.
Cells ; 11(19)2022 Sep 21.
Article in English | MEDLINE | ID: covidwho-2043596

ABSTRACT

The coronavirus disease 2019 (COVID-19) is accompanied by a cytokine storm with the release of many proinflammatory factors and development of respiratory syndrome. Several SARS-CoV-2 lineages have been identified, and the Delta variant (B.1.617), linked with high mortality risk, has become dominant in many countries. Understanding the immune responses associated with COVID-19 lineages may therefore aid the development of therapeutic and diagnostic strategies. Multiple single-cell gene expression studies revealed innate and adaptive immunological factors and pathways correlated with COVID-19 severity. Additional investigations covering host-pathogen response characteristics for infection caused by different lineages are required. Here, we performed single-cell transcriptome profiling of blood mononuclear cells from the individuals with different severity of the COVID-19 and virus lineages to uncover variant specific molecular factors associated with immunity. We identified significant changes in lymphoid and myeloid cells. Our study highlights that an abundant population of monocytes with specific gene expression signatures accompanies Delta lineage of SARS-CoV-2 and contributes to COVID-19 pathogenesis inferring immune components for targeted therapy.


Subject(s)
COVID-19 , COVID-19/genetics , Gene Expression , Humans , Immunologic Factors , SARS-CoV-2
12.
Front Immunol ; 13: 995886, 2022.
Article in English | MEDLINE | ID: covidwho-2043453

ABSTRACT

Kawasaki disease (KD), a multisystem inflammatory syndrome that occurs in children, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or COVID-19) may share some overlapping mechanisms. The purpose of this study was to analyze the differences in single-cell RNA sequencing between KD and COVID-19. We performed single-cell RNA sequencing in KD patients (within 24 hours before IVIG treatment) and age-matched fever controls. The single-cell RNA sequencing data of COVID-19, influenza, and health controls were downloaded from the Sequence Read Archive (GSE149689/PRJNA629752). In total, 22 single-cell RNA sequencing data with 102,355 nuclei were enrolled in this study. After performing hierarchical and functional clustering analyses, two enriched gene clusters demonstrated similar patterns in severe COVID-19 and KD, heightened neutrophil activation, and decreased MHC class II expression. Furthermore, comparable dysregulation of neutrophilic granulopoiesis representing two pronounced hyperinflammatory states was demonstrated, which play a critical role in the overactivated and defective aging program of granulocytes, in patients with KD as well as those with severe COVID-19. In conclusion, both neutrophil activation and MHC class II reduction play a crucial role and thus may provide potential treatment targets for KD and severe COVID-19.


Subject(s)
COVID-19 , Mucocutaneous Lymph Node Syndrome , COVID-19/complications , Child , Humans , Immunoglobulins, Intravenous , Neutrophils , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
13.
Frontiers in Genetics ; 13, 2022.
Article in English | EMBASE | ID: covidwho-2043440

ABSTRACT

Background: The COVID-19 pandemic has currently developed into a worldwide threat to humankind. Importantly, patients with severe COVID-19 are believed to have a higher mortality risk than those with mild conditions. However, despite the urgent need to develop novel therapeutic strategies, the biological features and pathogenic mechanisms of severe COVID-19 are poorly understood. Methods: Here, peripheral blood mononuclear cells (PBMCs) from four patients with severe COVID-19, four patients with mild COVID-19, and four healthy controls were examined by RNA sequencing (RNA-Seq). We conducted gene expression analysis and Venn diagrams to detect specific differentially expressed genes (DEGs) in patients with severe disease compared with those with mild conditions. Gene Ontology (GO) enrichment analysis was performed to identify the significant biological processes, and protein–protein interaction networks were constructed to extract hub genes. These hub genes were then subjected to regulatory signatures and protein–chemical interaction analysis for certain regulatory checkpoints and identification of potent chemical agents. Finally, to demonstrate the cell type-specific expression of these genes, we performed single-cell RNA-Seq analyses using an online platform. Results: A total of 144 DEGs were specifically expressed in severe COVID-19, and GO enrichment analysis revealed a significant association of these specific DEGs with autophagy. Hub genes such as MVB12A, CHMP6, STAM, and VPS37B were then found to be most significantly involved in the biological processes of autophagy at the transcriptome level. In addition, six transcription factors, including SRF, YY1, CREB1, PPARG, NFIC, and GATA2, as well as miRNAs, namely, hsa-mir-1-3p, and potent chemical agents such as copper sulfate and cobalt chloride, may cooperate in regulating the autophagy hub genes. Furthermore, classical monocytes may play a central role in severe COVID-19. Conclusion: We suggest that autophagy plays a crucial role in severe COVID-19. This study might facilitate a more profound knowledge of the biological characteristics and progression of COVID-19 and the development of novel therapeutic approaches to achieve a breakthrough in the current COVID-19 pandemic.

14.
Swiss Medical Weekly ; 152:25S-26S, 2022.
Article in English | EMBASE | ID: covidwho-2040836

ABSTRACT

Background: The role of T cell immunity in protection against COVID-19 in immunosuppressed patients who failed to mount serological responses remains ill defined. Hypothesis: Vaccine-based intradermal skin test (IDT) serves as a surrogate marker of T cell responses in seronegative immunosuppressed patients. Methods: We compared anti-SARS-CoV-2 antibodies and cellular responses in vaccinated immunosuppressed (IS) patients (n = 58), healthy unvaccinated naive controls (NC, n = 8) and healthy vaccinated controls (VC, n = 32) by Luminex, IFN-γ ELIPSOT and IDT 3 to 6 months after vaccination. In 3 VC we performed a skin biopsy 24h after IDT and performed single-cell RNAseq of the skin-infiltrating CD45+ cells Results: Seronegative NC had no detectable T cell responses and negative IDR, whereas VC had anti-SARS-CoV-2 antibodies (100%), positive ELIPSOT (90%) and IDR (90%). Overall IS patients had significantly less antibodies up to 39 weeks after vaccination compared to VC but similar ELIPSOT responses. ELISPOT was positive in 33.3 % and 66.6 % and IDR in 62.5% and 90.5% of seronegative vs seropositive IS patients respectively. Conversely, patients with negative IDR had significantly lower T cell responses and IgG titers than those with positive IDR. Importantly, the TCR repertoire of infiltrating skin lymphocytes revealed 18/1064 clonotypes with known specificities against SARS-CoV-2. Conclusion: Our results indicate that local reaction to IDR is partially composed of SARS-CoV-2-specific T cells. IDR represents a promising tool to cost-effectively monitor SARS-CoV-2 specific T cell immunity in IS patients.

15.
Crit Care ; 26(1): 252, 2022 08 22.
Article in English | MEDLINE | ID: covidwho-2038845

ABSTRACT

Pulmonary microbial diversity may be influenced by biotic or abiotic conditions (e.g., disease, smoking, invasive mechanical ventilation (MV), etc.). Specially, invasive MV may trigger structural and physiological changes in both tissue and microbiota of lung, due to gastric and oral microaspiration, altered body posture, high O2 inhalation-induced O2 toxicity in hypoxemic patients, impaired airway clearance and ventilator-induced lung injury (VILI), which in turn reduce the diversity of the pulmonary microbiota and may ultimately lead to poor prognosis. Furthermore, changes in (local) O2 concentration can reduce the diversity of the pulmonary microbiota by affecting the local immune microenvironment of lung. In conclusion, systematic literature studies have found that invasive MV reduces pulmonary microbiota diversity, and future rational regulation of pulmonary microbiota diversity by existing or novel clinical tools (e.g., lung probiotics, drugs) may improve the prognosis of invasive MV treatment and lead to more effective treatment of lung diseases with precision.


Subject(s)
Lung , Microbiota , Respiration, Artificial , Humans , Lung/microbiology , Respiration, Artificial/adverse effects , Ventilator-Induced Lung Injury/epidemiology
16.
Am J Respir Crit Care Med ; 206(6): 712-729, 2022 09 15.
Article in English | MEDLINE | ID: covidwho-2038405

ABSTRACT

Rationale: Patients with chronic obstructive pulmonary disease (COPD) develop more severe coronavirus disease (COVID-19); however, it is unclear whether they are more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and what mechanisms are responsible for severe disease. Objectives: To determine whether SARS-CoV-2 inoculated primary bronchial epithelial cells (pBECs) from patients with COPD support greater infection and elucidate the effects and mechanisms involved. Methods: We performed single-cell RNA sequencing analysis on differentiated pBECs from healthy subjects and patients with COPD 7 days after SARS-CoV-2 inoculation. We correlated changes with viral titers, proinflammatory responses, and IFN production. Measurements and Main Results: Single-cell RNA sequencing revealed that COPD pBECs had 24-fold greater infection than healthy cells, which was supported by plaque assays. Club/goblet and basal cells were the predominant populations infected and expressed mRNAs involved in viral replication. Proteases involved in SARS-CoV-2 entry/infection (TMPRSS2 and CTSB) were increased, and protease inhibitors (serpins) were downregulated more so in COPD. Inflammatory cytokines linked to COPD exacerbations and severe COVID-19 were increased, whereas IFN responses were blunted. Coexpression analysis revealed a prominent population of club/goblet cells with high type 1/2 IFN responses that were important drivers of immune responses to infection in both healthy and COPD pBECs. Therapeutic inhibition of proteases and inflammatory imbalances reduced viral titers and cytokine responses, particularly in COPD pBECs. Conclusions: COPD pBECs are more susceptible to SARS-CoV-2 infection because of increases in coreceptor expression and protease imbalances and have greater inflammatory responses. A prominent cluster of IFN-responsive club/goblet cells emerges during infection, which may be important drivers of immunity. Therapeutic interventions suppress SARS-CoV-2 replication and consequent inflammation.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Serpins , Cytokines , Epithelial Cells , Humans , Peptide Hydrolases , Pulmonary Disease, Chronic Obstructive/drug therapy , SARS-CoV-2 , Sequence Analysis, RNA , Serpins/pharmacology , Serpins/therapeutic use
17.
Front Genet ; 13: 948508, 2022.
Article in English | MEDLINE | ID: covidwho-2029960

ABSTRACT

Cell-cell interactions (CCI) play significant roles in manipulating biological functions of cells. Analyzing the differences in CCI between healthy and diseased conditions of a biological system yields greater insight than analyzing either conditions alone. There has been a recent and rapid growth of methods to infer CCI from single-cell RNA-sequencing (scRNA-seq), revealing complex CCI networks at a previously inaccessible scale. However, the majority of current CCI analyses from scRNA-seq data focus on direct comparisons between individual CCI networks of individual samples from patients, rather than "group-level" comparisons between sample groups of patients comprising different conditions. To illustrate new biological features among different disease statuses, we investigated the diversity of key network features on groups of CCI networks, as defined by different disease statuses. We considered three levels of network features: node level, as defined by cell type; node-to-node level; and network level. By applying these analysis to a large-scale single-cell RNA-sequencing dataset of coronavirus disease 2019 (COVID-19), we observe biologically meaningful patterns aligned with the progression and subsequent convalescence of COVID-19.

18.
13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, BCB 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2029544

ABSTRACT

Bio-marker identification for COVID-19 remains a vital research area to improve current and future pandemic responses. Innovative artificial intelligence and machine learning-based systems may leverage the large quantity and complexity of single cell sequencing data to quickly identify disease with high sensitivity. In this study, we developed a novel approach to classify patient COVID-19 infection severity using single-cell sequencing data derived from patient BronchoAlveolar Lavage Fluid (BALF) samples. We also identified key genetic biomarkers associated with COVID-19 infection severity. Feature importance scores from high performing COVID-19 classifiers were used to identify a set of novel genetic biomarkers that are predictive of COVID-19 infection severity. Treatment development and pandemic reaction may be greatly improved using our novel big-data approach. Our implementation is available on https://github.com/aekanshgoel/COVID-19-scRNAseq. © 2022 Owner/Author.

19.
Genes Genomics ; 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2027707

ABSTRACT

BACKGROUND: Alarmins S100A8 and S100A9 are recognized as hallmarks of severe COVID-19 and are primarily produced in myeloid cells, such as monocytes and neutrophils. As single-cell RNA-sequencing (scRNA-seq) data from patients with COVID-19 revealed the expression of S100A8/A9 in lymphoid cells in patients with severe COVID-19. OBJECTIVE: We investigated the characteristics of lymphoid cells expressing S100A8/A9 in COVID-19 patients. METHODS: Publicly available scRNA-seq data from patients with mild (N = 12) or severe (N = 7) COVID-19 were reanalyzed. The data were further divided into the following two groups based on the time of sample collection (from infection-onset): within 6 days (early phase) and after 6 days (late phase). Differential expression and gene set enrichment analyses were performed between S100A8/A9High and S100A8/A9Low lymphoid cells. Finally, cell-cell interaction analysis was performed to investigate the role of lymphoid cells expressing high levels of S100A8/A9 in COVID-19. RESULTS: S100A8/A9 overexpression was observed in lymphoid cells, including B cells, T cells, and NK cells, in patients with severe COVID-19 (compared to patients with mild COVID-19). Cells exhibiting strong interferon/cytokine responses were found to be associated with the severity of COVID-19. Furthermore, differences in S100A8/A9-TLR4/RAGE interactions were confirmed between patients with severe and mild disease. CONCLUSIONS: Lymphoid cells overexpressing S100A8/A9 contribute to the dysregulation of the innate immune response in patients with severe COVID-19, specifically during the early phase of infection. This study fosters a better understanding of the hyper-induction of pro-inflammatory cytokine expression and the generation of a cytokine storm in response to COVID-19 infection.

20.
Front Immunol ; 13: 973070, 2022.
Article in English | MEDLINE | ID: covidwho-2022754

ABSTRACT

During an infectious disease progression, it is crucial to understand the cellular heterogeneity underlying the differential immune response landscape that will augment the precise information of the disease severity modulators, leading to differential clinical outcome. Patients with COVID-19 display a complex yet regulated immune profile with a heterogeneous array of clinical manifestation that delineates disease severity sub-phenotypes and worst clinical outcomes. Therefore, it is necessary to elucidate/understand/enumerate the role of cellular heterogeneity during COVID-19 disease to understand the underlying immunological mechanisms regulating the disease severity. This article aims to comprehend the current findings regarding dysregulation and impairment of immune response in COVID-19 disease severity sub-phenotypes and relate them to a wide array of heterogeneous populations of immune cells. On the basis of the findings, it suggests a possible functional correlation between cellular heterogeneity and the COVID-19 disease severity. It highlights the plausible modulators of age, gender, comorbidities, and hosts' genetics that may be considered relevant in regulating the host response and subsequently the COVID-19 disease severity. Finally, it aims to highlight challenges in COVID-19 disease that can be achieved by the application of single-cell genomics, which may aid in delineating the heterogeneity with more granular understanding. This will augment our future pandemic preparedness with possibility to identify the subset of patients with increased diseased severity.


Subject(s)
COVID-19 , Genomics , Humans , Immunity , Phenotype , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL