Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Document Type
Year range
Clin Microbiol Infect ; 2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-2076012


OBJECTIVES: We sought to investigate the efficacy and safety of SpikoGen®, a subunit coronavirus disease 2019 (COVID-19) vaccine composed of a recombinant severe acute respiratory syndrome coronavirus 2 spike protein with Advax-CpG55.2™ adjuvant. METHODS: This randomized, placebo-controlled, double-blind, phase 3 trial was conducted on 16 876 participants randomized (3:1) to receive two intramuscular doses of SpikoGen® or a saline placebo 21 days apart. The primary outcome was to assess the efficacy of SpikoGen® in preventing symptomatic COVID-19. Secondary outcomes included safety assessments and evaluation of SpikoGen® vaccine's efficacy in preventing severe COVID-19. The study aimed for 147 COVID-19 symptomatic cases. RESULTS: Overall, 12 657 and 4219 participants were randomized to the SpikoGen® and placebo group and followed for a median of 55 days (interquartile range, 48-60 days) and 51 days (interquartile range, 46-58 days) after 14 days of the second dose, respectively. In the final per-protocol analysis, the number of COVID-19 cases was 247 of 9998 (2.4%) in the SpikoGen® group and 119 of 3069 (3.8%) in the placebo group. This equated to a vaccine efficacy of 43.99% (95% CI, 30.3-55.0%). The efficacy was calculated to be 44.22% (95% CI, 31.13-54.82%) among all participants who received both doses. From 2 weeks after the second dose, 5 of 9998 (0.05%) participants in the SpikoGen® group and 6 of 3069 (0.19%) participants in the placebo group developed severe COVID-19, equating to a vaccine efficacy against severe disease of 77.51% (95% CI, 26.3-93.1%). The SpikoGen® vaccine was well tolerated. DISCUSSION: A 2-dose regimen of SpikoGen® reduced the rate of COVID-19 and severe disease in the wave of the Delta variant.

Clin Microbiol Infect ; 28(9): 1263-1271, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1797042


OBJECTIVE: We aimed to investigate the immunogenicity and safety of SpikoGen®, a subunit COVID-19 vaccine composed of a recombinant prefusion-stabilized SARS-CoV-2 spike protein combined with the Advax-CpG55.2™ adjuvant, in seronegative and seropositive populations as primary vaccination. METHODS: This randomized, placebo-controlled, double-blind phase 2 trial was conducted on 400 participants randomized 3:1 to receive two doses of 25 µg of SpikoGen® 3 weeks apart or the placebo. The primary safety outcomes were the incidence of solicited adverse events up to 7 days after each dose and unsolicited adverse events up to 28 days after the second dose. The primary immunogenicity outcomes were seroconversion against the S1 protein and the geometric mean concentration of S1 antibodies by days 21 and 35. RESULTS: The SpikoGen® vaccine was well tolerated and no serious adverse events were recorded. The most common solicited adverse events were injection site pain and fatigue, largely graded as mild and transient. By day 35 (2 weeks post second dose), the seroconversion rate against S1 was 63.55 (95% CI: 57.81-69.01) in the SpikoGen® group versus 7.23 (95% CI: 2.7-15.07) in the placebo group. The geometric mean concentration of S1 antibodies was 29.12 (95% CI: 24.32-34.87) in the SpikoGen® group versus 5.53 (95% CI: 4.39-6.97) in the placebo group. Previously infected seropositive volunteers showed a large SARS-CoV-2 humoral response after a single SpikoGen® dose. DISCUSSION: SpikoGen® had an acceptable safety profile and induced promising humoral and cellular immune responses against SARS-CoV-2.

COVID-19 Vaccines , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Humans , Inulin/analogs & derivatives , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Subunit
Emerg Microbes Infect ; 11(1): 1058-1071, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1752040


Safe, efficacious, and deployable vaccines are urgently needed to control COVID-19 in the large-scale vaccination campaigns. We report here the preclinical studies of an approved protein subunit vaccine against COVID-19, ZF2001, which contains tandem-repeat dimeric receptor-binding domain (RBD) protein with alum-based adjuvant. We assessed vaccine immunogenicity and efficacy in both mice and non-human primates (NHPs). ZF2001 induced high levels of RBD-binding and SARS-CoV-2 neutralizing antibody in both mice and non-human primates, and elicited balanced TH1/TH2 cellular responses in NHPs. Two doses of ZF2001 protected Ad-hACE2-transduced mice against SARS-CoV-2 infection, as detected by reduced viral RNA and relieved lung injuries. In NHPs, vaccination of either 25 µg or 50 µg ZF2001 prevented infection with SARS-CoV-2 in lung, trachea, and bronchi, with milder lung lesions. No evidence of disease enhancement was observed in both animal models. ZF2001 has been approved for emergency use in China, Uzbekistan, Indonesia, and Columbia. The high safety, immunogenicity, and protection efficacy in both mice and NHPs found in this preclinical study was consistent with the results in human clinical trials.

COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Carrier Proteins , Humans , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Primates , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Subunit
ACS Infect Dis ; 8(4): 825-840, 2022 04 08.
Article in English | MEDLINE | ID: covidwho-1735186


FDA-approved and emergency use-authorized vaccines using new mRNA and viral-vector technology are highly effective in preventing moderate to severe disease; however, information on their long-term efficacy and protective breadth against severe acute respiratory syndrome coronavirus 2 variants of concern (VOCs) is currently scarce. Here, we describe the durability and broad-spectrum VOC immunity of a prefusion-stabilized spike (S) protein adjuvanted with liquid or lyophilized CoVaccine HT in cynomolgus macaques. This recombinant subunit vaccine is highly immunogenic and induces robust spike-specific and broadly neutralizing antibody responses effective against circulating VOCs (B.1.351 [Beta], P.1 [Gamma], and B.1.617 [Delta]) for at least three months after the final boost. Protective efficacy and postexposure immunity were evaluated using a heterologous P.1 challenge nearly three months after the last immunization. Our results indicate that while immunization with both high and low S doses shorten and reduce viral loads in the upper and lower respiratory tract, a higher antigen dose is required to provide durable protection against disease as vaccine immunity wanes. Histologically, P.1 infection causes similar COVID-19-like lung pathology as seen with early pandemic isolates. Postchallenge IgG concentrations were restored to peak immunity levels, and vaccine-matched and cross-variant neutralizing antibodies were significantly elevated in immunized macaques indicating an efficient anamnestic response. Only low levels of P.1-specific neutralizing antibodies with limited breadth were observed in control (nonvaccinated but challenged) macaques, suggesting that natural infection may not prevent reinfection by other VOCs. Overall, these results demonstrate that a properly dosed and adjuvanted recombinant subunit vaccine can provide protective immunity against circulating VOCs for at least three months.

COVID-19 , SARS-CoV-2 , Adjuvants, Immunologic , Animals , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Macaca , Vaccines, Subunit