ABSTRACT
The recent reinforcement of CoV surveillance in animals fuelled by the COVID-19 pandemic provided increasing evidence that mammals other than bats might hide further diversity and play critical roles in human infectious diseases. This work describes the results of a two-year survey carried out in Italy with the double objective of uncovering CoV diversity associated with wildlife and of excluding the establishment of a reservoir for SARS-CoV-2 in particularly susceptible or exposed species. The survey targeted hosts from five different orders and was harmonised across the country in terms of sample size, target tissues, and molecular test. Results showed the circulation of 8 CoV species in 13 hosts out of the 42 screened. Coronaviruses were either typical of the host species/genus or normally associated with their domestic counterpart. Two novel viruses likely belonging to a novel CoV genus were found in mustelids. All samples were negative for SARS-CoV-2, with minimum detectable prevalence ranging between 0.49% and 4.78% in the 13 species reaching our threshold sample size of 59 individuals. Considering that within-species transmission in white-tailed deer resulted in raising the prevalence from 5% to 81% within a few months, this result would exclude a sustained cycle after spillback in the tested species.
Subject(s)
COVID-19 , Chiroptera , Deer , One Health , Animals , Humans , Animals, Wild , COVID-19/epidemiology , COVID-19/veterinary , SARS-CoV-2 , PandemicsABSTRACT
BACKGROUND: Twitter has become a dominant source of public health data and a widely used method to investigate and understand public health-related issues internationally. By leveraging big data methodologies to mine Twitter for health-related data at the individual and community levels, scientists can use the data as a rapid and less expensive source for both epidemiological surveillance and studies on human behavior. However, limited reviews have focused on novel applications of language analyses that examine human health and behavior and the surveillance of several emerging diseases, chronic conditions, and risky behaviors. OBJECTIVE: The primary focus of this scoping review was to provide a comprehensive overview of relevant studies that have used Twitter as a data source in public health research to analyze users' tweets to identify and understand physical and mental health conditions and remotely monitor the leading causes of mortality related to emerging disease epidemics, chronic diseases, and risk behaviors. METHODS: A literature search strategy following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) extended guidelines for scoping reviews was used to search specific keywords on Twitter and public health on 5 databases: Web of Science, PubMed, CINAHL, PsycINFO, and Google Scholar. We reviewed the literature comprising peer-reviewed empirical research articles that included original research published in English-language journals between 2008 and 2021. Key information on Twitter data being leveraged for analyzing user language to study physical and mental health and public health surveillance was extracted. RESULTS: A total of 38 articles that focused primarily on Twitter as a data source met the inclusion criteria for review. In total, two themes emerged from the literature: (1) language analysis to identify health threats and physical and mental health understandings about people and societies and (2) public health surveillance related to leading causes of mortality, primarily representing 3 categories (ie, respiratory infections, cardiovascular disease, and COVID-19). The findings suggest that Twitter language data can be mined to detect mental health conditions, disease surveillance, and death rates; identify heart-related content; show how health-related information is shared and discussed; and provide access to users' opinions and feelings. CONCLUSIONS: Twitter analysis shows promise in the field of public health communication and surveillance. It may be essential to use Twitter to supplement more conventional public health surveillance approaches. Twitter can potentially fortify researchers' ability to collect data in a timely way and improve the early identification of potential health threats. Twitter can also help identify subtle signals in language for understanding physical and mental health conditions.
Subject(s)
COVID-19 , Health Communication , Social Media , Humans , Linguistics , Public HealthABSTRACT
Wastewater-based epidemiology (WBE) is a promising approach for monitoring the spread of SARS-CoV-2 within communities. Although qPCR-based WBE is powerful in that it allows quick and highly sensitive detection of this virus, it can provide limited information about which variants are responsible for the overall increase or decrease of this virus in sewage, and this hinders accurate risk assessments. To resolve this problem, we developed a next generation sequencing (NGS)-based method to determine the identity and composition of individual SARS-CoV-2 variants in wastewater samples. Combination and optimization of targeted amplicon-sequencing and nested PCR allowed detection of each variant with sensitivity comparable to that of qPCR. In addition, by targeting the receptor binding domain (RBD) of the S protein, which has mutations informative for variant classification, we could discriminate most variants of concern (VOC) and even sublineages of Omicron (BA.1, BA.2, BA.4/5, BA.2.75, BQ.1.1 and XBB.1). Focusing on a limited domain has a benefit of decreasing the sequencing reads. We applied this method to wastewater samples collected from a wastewater treatment plant in Kyoto city throughout 13 months (from January 2021 to February 2022) and successfully identified lineages of wild-type, alpha, delta, omicron BA.1 and BA.2 as well as their compositions in the samples. The transition of these variants was in good agreement with the epidemic situation reported in Kyoto city during that period based on clinical testing. These data indicate that our NGS-based method is useful for detecting and tracking emerging variants of SARS-CoV-2 in sewage samples. Coupled with the advantages of WBE, this method has the potential to serve as an efficient and low cost means for the community risk assessment of SARS-CoV-2 infection.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Wastewater , SewageABSTRACT
The rapid emergence of COVID-19 variants of concern (VOCs) has hindered vaccine uptake. To inform policy, we investigated the effectiveness of the BNT162b2 vaccination among adolescents against symptomatic and severe COVID-19 diseases using mostly real-world data (15 studies). We searched international databases until May 2022 and used Cochrane's risk of bias tools for critical appraisal. Random effects models were used to examine overall vaccine effectiveness (VE) across studies (general inverse-variance) and the effect of circulating VOCs on VE (log relative ratio and VE). Meta-regression assessed the effect of age and time on VE (restricted-maximum likelihood). BNT162b2 VE against PCR-confirmed SARS-CoV-2 was 82.7% (95%CI: 78.37-87.31%). VE was higher for severe (88%) than non-severe (35%) outcomes and declining over time improved following booster dose in omicron era [73%(95%CI:65-81%)]. Fully vaccinated adolescents are protected from COVID-19 circulating VOCs by BNT162b2 especially for the need of critical care or life support.
Subject(s)
COVID-19 , Adolescent , Humans , COVID-19/prevention & control , SARS-CoV-2 , BNT162 Vaccine , Vaccination , RNA, MessengerABSTRACT
Background: In many countries, non-pharmaceutical interventions to limit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission resulted in significant reductions in other respiratory viruses. However, similar data from Africa are limited. We explored the extent to which viruses such as influenza and rhinovirus co-circulated with SARS-CoV-2 in The Gambia during the COVID-19 pandemic. Methods: Between April 2020 and March 2022, respiratory viruses were detected using RT-PCR in nasopharyngeal swabs from 1397 participants with influenza-like illness. An assay to detect SARS-CoV-2 and a viral multiplex RT-PCR assay was used as previously described to detect influenza A and B, respiratory syncytial virus (RSV) A and B, parainfluenza viruses 1-4, human metapneumovirus (HMPV), adenovirus, seasonal coronaviruses (229E, OC43, NL63) and human rhinovirus. Results: Overall virus positivity was 44.2%, with prevalence higher in children <5 years (80%) compared to children aged 5-17 years (53.1%), adults aged 18-50 (39.5%) and >50 years (39.9%), p<0.0001. After SARS-CoV-2 (18.3%), rhinoviruses (10.5%) and influenza viruses (5.5%) were the most prevalent. SARS-CoV-2 positivity was lower in children <5 (4.3%) and 5-17 years (12.7%) than in adults aged 18-50 (19.3%) and >50 years (24.3%), p<0.0001. In contrast, rhinoviruses were most prevalent in children <5 years (28.7%), followed by children aged 5-17 (15.8%), adults aged 18-50 (8.3%) and >50 years (6.3%), p<0.0001. Four SARS-CoV-2 waves occurred, with 36.1%-52.4% SARS-CoV-2 positivity during peak months. Influenza infections were observed in both 2020 and 2021 during the rainy season as expected (peak positivity 16.4%-23.5%). Peaks of rhinovirus were asynchronous to the months when SARS-CoV-2 and influenza peaked. Conclusion: Our data show that many respiratory viruses continued to circulate during the COVID-19 pandemic in The Gambia, including human rhinoviruses, despite the presence of NPIs during the early stages of the pandemic, and influenza peaks during expected months.
ABSTRACT
BACKGROUND: Many SARS-CoV-2 seroprevalence surveys since the end of 2020 have disqualified the first misconception that Africa had been spared by the pandemic. Through the analysis of three SARS-CoV-2 seroprevalence surveys carried out in Benin as part of the ARIACOV project, we argue that the integration of epidemiological serosurveillance of the SARS-CoV-2 infection in the national surveillance packages would be of great use to refine the understanding of the COVID-19 pandemic in Africa. METHODS: We carried out three repeated cross-sectional surveys in Benin: two in Cotonou, the economic capital in March and May 2021, and one in Natitingou, a semi-rural city in the north of the country in August 2021. Total and weighted-by-age-group seroprevalences were estimated and the risk factors for SARS-CoV-2 infection were assessed by multivariate logistic regression. RESULTS: In Cotonou, a slight increase in overall age-standardised SARS-CoV-2 seroprevalence from 29.77% (95% CI: 23.12%-37.41%) at the first survey to 34.86% (95% CI: 31.57%-38.30%) at the second survey was observed. In Natitingou, the globally adjusted seroprevalence was 33.34% (95% CI: 27.75%-39.44%). A trend of high risk for SARS-CoV 2 seropositivity was observed in adults over 40 versus the young (less than 18 years old) during the first survey in Cotonou but no longer in the second survey. CONCLUSIONS: Our results show that, however, rapid organisation of preventive measures aimed at breaking the chains of transmission, they were ultimately unable to prevent a wide spread of the virus in the population. Routine serological surveillance on strategic sentinel sites and/or populations could constitute a cost-effective compromise to better anticipate the onset of new waves and define public health strategies.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Adolescent , Benin/epidemiology , COVID-19/epidemiology , Pandemics , Cross-Sectional Studies , Seroepidemiologic Studies , Antibodies, ViralABSTRACT
Since SARS-CoV-2 caused the COVID-19 pandemic, records have suggested the occurrence of reverse zoonosis of pets and farm animals in contact with SARS-CoV-2-positive humans in the Occident. However, there is little information on the spread of the virus among animals in contact with humans in Africa. Therefore, this study aimed to investigate the occurrence of SARS-CoV-2 in various animals in Nigeria. Overall, 791 animals from Ebonyi, Ogun, Ondo, and Oyo States, Nigeria were screened for SARS-CoV-2 using RT-qPCR (n = 364) and IgG ELISA (n = 654). SARS-CoV-2 positivity rates were 45.9% (RT-qPCR) and 1.4% (ELISA). SARS-CoV-2 RNA was detected in almost all animal taxa and sampling locations except Oyo State. SARS-CoV-2 IgGs were detected only in goats from Ebonyi and pigs from Ogun States. Overall, SARS-CoV-2 infectivity rates were higher in 2021 than in 2022. Our study highlights the ability of the virus to infect various animals. It presents the first report of natural SARS-CoV-2 infection in poultry, pigs, domestic ruminants, and lizards. The close human-animal interactions in these settings suggest ongoing reverse zoonosis, highlighting the role of behavioral factors of transmission and the potential for SARS-CoV-2 to spread among animals. These underscore the importance of continuous monitoring to detect and intervene in any eventual upsurge.
Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Swine , SARS-CoV-2/genetics , Nigeria/epidemiology , COVID-19/epidemiology , COVID-19/veterinary , Pandemics , RNA, Viral/genetics , Zoonoses/epidemiology , Animals, Domestic , GoatsABSTRACT
Objective: This prospective cohort study quantified injury patterns related to specific circus discipline exposure in preprofessional and professional circus artists. Methods: Circus artists (n=201; ages 13-69; 172 female, 29 male assigned sex at birth) were enrolled in 10 cities across the USA. Participants were followed for 1 year from enrolment, completing a weekly training log and undergoing a physical therapist evaluation for injuries. The circus-specific extension of the International Olympic Committee 2020 consensus on recording injury and illness in sports was used to analyse injury patterns. Results: The study completion rate was 77% (n=155). Data were analysed by participant subgroup (age, professional status, sex at birth). The highest injury rates in participant subgroups were for males (5.69/1000 exposures) and related to discipline subgroups, were in aerial with ground elements (5.93/1000 exposures) and aerial (4.26/1000 exposures). Adults had more injuries related to aerial, whereas adolescents had more related to ground disciplines (χ2 (2)=10.62, p=0.005) and non-time loss injuries (χ2 (1)=5.45, p=0.02). Females had a higher proportion of repetitive injuries (70% vs 55%) than males (χ2 (1) = 4.43, p=0.035). Individuals with an eating disorder history had more (p<0.004) injuries (mean 2.27±2.29) than those without (mean=1.48±0.96). Conclusions: This study showed that intrinsic factors (age, sex at birth and history of eating disorder) and extrinsic factors (circus discipline exposure) affect injury risk. We need to account for the intersectionality of these factors to address risk management at an individual and group level.
ABSTRACT
The recent widespread emergence of monkeypox (mpox), a rare and endemic zoonotic disease by monkeypox virus (MPXV), has made global headlines. While transmissibility (R0 ≈ 0.58) and fatality rate (0-3%) are low, as it causes prolonged morbidity, the World Health Organization has declared monkeypox as a public health emergency of international concern. Thus, effective containment and disease management require quick and efficient detection of MPXV. In this bioinformatic overview, we summarize the numerous molecular tests available for MPXV, and discuss the diversity of genes and primers used in the polymerase chain reaction-based detection. Over 90 primer/probe sets are used for the detection of poxviruses. While hemagglutinin and A-type inclusion protein are the most common target genes, tumor necrosis factor receptor and complement binding protein genes are frequently used for distinguishing Clade I and Clade II of MPXV. Problems and possibilities in the detection of MPXV have been discussed.
Subject(s)
Monkeypox , Humans , Monkeypox/diagnosis , Monkeypox/pathology , Monkeypox virus/genetics , Polymerase Chain Reaction , DNA, Viral/genetics , Public HealthABSTRACT
During COVID-19 vaccination campaign, possible ChAdOx1-S-associated risks of thrombosis with thrombocytopenia syndrome led to implement ChAdOx1-S/BNT162b2 heterologous vaccination, despite the limited information on its reactogenicity and safety. We conducted a prospective observational post-marketing surveillance study to assess the safety of this heterologous schedule. A casually selected sample of recipients (n: 85; age: 18-60 years) of ChAdOx1-S/BNT162b2 at the vaccination hub of the Foggia Hospital, Italy, was matched with an equal sample of recipients of homologous BNT162b2. Safety was evaluated 7 days, 1 month and 14 weeks after the primary vaccination series using an adapted version of the "V-safe active surveillance for COVID-19 vaccine safety" CDC standardized questionnaire. After 7 days, local reactions were highly frequent (>80%) in both groups, and systemic reactions were less common (<70%). Moderate or severe pain at the injection site (OR = 3.62; 95%CI, 1.45-9.33), moderate/severe fatigue (OR = 3.40; 95%CI, 1.22-9.49), moderate/severe headache (OR = 4.72; 95%CI, 1.37-16.23), intake of antipyretics (OR = 3.05; 95 CI%, 1.35-6.88), inability to perform daily activities and work (OR = 2.64; 95%CI, 1.24-5.62) were significantly more common with heterologous than homologous vaccination. No significant difference in self-reported health status was recorded 1 month or 14 weeks after the second dose with BNT162b2 or ChAdOx1-S/BNT162b2. Our study confirms the safety of both heterologous and homologous vaccination, with a slight increase in some short-term adverse events for the heterologous regimen. Therefore, administering a second dose of a mRNA vaccine to the recipients of a previous dose of viral vector vaccine may have represented an advantageous strategy to improve flexibility and to accelerate the vaccination campaign.
Subject(s)
BNT162 Vaccine , COVID-19 , Humans , Adolescent , Young Adult , Adult , Middle Aged , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Vaccination/adverse effects , Italy , MarketingABSTRACT
Objectives: Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in young children. We aimed to analyze the factors affecting the estimation of RSV-related disease burden, and to provide evidence to help establish a surveillance system. Methods: We searched the English- and Chinese-language databases for articles published between January 1, 2010 and June 2, 2022. The quality of the included articles was assessed using the Agency for Healthcare Research and Quality scale. Random-effects models were used for data synthesis and subgroup analyses. This review was registered in the Prospective Register of Systematic Reviews (PROSPERO: CRD42022372972). Results: We included 44 studies (149,321,171 participants), all of which were of medium or high quality. The pooled RSV-related disease incidence, hospitalization rate, in-hospital mortality, and overall mortality rates in children aged 5 years and younger were 9.0 per 100 children per year (95% confidence interval [CI]: 7.0-11.0), 1.7 per 100 children per year (95% CI: 1.3-2.1), 0.5 per 100 children per year (95% CI: 0.4-0.5), and 0.05 per 100 children per year (95% CI: 0.04-0.06), respectively. Age, economics, surveillance types, case definition, and data source were all recognized as influencing factors. Conclusions: A standardized and unified RSV surveillance system is required. Case definition and surveillance types should be fully considered for surveillance of different age groups.
Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , United States , Child , Humans , Child, Preschool , Incidence , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Tract Infections/epidemiology , HospitalizationABSTRACT
Non-communicable diseases as a leading cause of death have a surveillance system in most countries. This is disturbed by the emergence of coronavirus disease-2019 (COVID-19) in December 2019. In this regard, health system managers at decision-making levels tried to overcome this problem. Therefore, strategies to deal with this issue and bring the surveillance system to an ideal state were proposed and considered.
ABSTRACT
OBJECTIVES: In Tuscany, Italy, New Delhi metallo-beta-lactamase-producing carbapenem-resistant Enterobacterales (NDM-CRE) in hospitalized patients has increasingly been observed since 2018, leading in 2019 to the implementation of enhanced control measures successfully reducing transmission. We describe the NDM-CRE epidemiology during the COVID-19 pandemic in Tuscany. METHODS: Data on NDM-CRE patients hospitalized in five Tuscan hospitals were collected from January 2019 to December 2021. Weekly rates of NDM-CRE cases on hospital days in medical and critical-care wards were calculated. In March-December 2020, NDM-CRE rates were stratified by COVID-19 diagnosis. Multi-variate regression analysis was performed to assess outcomes' differences among two periods analysed and between COVID-19 populations. RESULTS: Since March 2020, an increase in NDM-CRE cases was observed, associated with COVID-19 admissions. COVID-19 patients differed significantly from non-COVID-19 ones by several variables, including patient features (age, Charlson index) and clinical history and outcomes (NDM-CRE infection/colonization, intensive care unit stay, length of stay, mortality). During the pandemic, we observed a higher rate of NDM-CRE cases per hospital day in both non-COVID-19 patients (273/100,000) and COVID-19 patients (370/100,00) when compared with pre-pandemic period cases (187/100,00). CONCLUSIONS: Our data suggest a resurgence in NDM-CRE spread among hospitalized patients in Tuscany during the COVID-19 pandemic, as well as a change in patients' case-mix. The observed increase in hospital transmission of NDM-CRE could be related to changes in infection prevention and control procedures, aimed mainly at COVID-19 management, leading to new challenges in hospital preparedness and crisis management planning.
Subject(s)
COVID-19 , Gammaproteobacteria , Humans , Pandemics , COVID-19 Testing , COVID-19/epidemiology , beta-Lactamases , Hospitals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity TestsABSTRACT
Background: The Public Health Empowerment Program (PHEP) is a 3-month training program for frontline public health staff to improve surveillance quality and strengthen the early warning system capacities. Studies evaluating the program and its impact on the health systems in the Eastern Mediterranean Region (EMR) are lacking. Therefore, this study aimed to assess the level of PHEP graduates' engagement in field epidemiology activities, assess their perceived skills and capacity to perform these activities and assess the extent to which PHEP helped the graduates to perform field epidemiology activities. Methods: A descriptive evaluation study was conducted based on levels 3 and 4 of Kirkpatrick's model for evaluating training programs to assess the change in graduates' behavior and the direct results of the program. Data were collected using two online surveys targeting PHEP graduates and programs' directors/ technical advisers. Results: A total of 162 PHEP graduates and 8 directors/ technical advisers participated in the study. The majority of PHEP graduates reported that they are often involved in activities such as responding to disease outbreaks effectively (87.7%) and monitoring surveillance data collection (75.3%). High proportions of PHEP graduates rated their skills as good in performing most of field epidemiology activities. The majority of graduates reported that the PHEP helped them much in conducting, reviewing, and monitoring surveillance data collection (92%), responding effectively to public health events and disease outbreaks (91.4%), and communicating information effectively with agency staff and with the local community (85.2%). Conclusion: PHEP appears to be an effective program for improving the public health workforce's skills and practices in epidemiological competencies in the EMR. PHEP strengthened the engagement of the graduates in most field epidemiology activities, especially during COVID-19.
Subject(s)
COVID-19 , Public Health , Humans , Disease Outbreaks , Mediterranean RegionABSTRACT
PURPOSE: The COVID-19 pandemic resulted in cessation and subsequent reduction of routine care including the outpatient ultrasound surveillance of AVF. This un-planned service disruption allowed evaluation of effectiveness of US surveillance in reducing AVF/AVG thrombosis. METHODS: This study was a secondary data analysis of monthly access patency for all in-centre patients receiving haemodialysis using an AVF or AVG over a 2-year period (April 2019-March 2021). The study included 298 patients with age, access type, patency and COVID status measured as variables. Thrombosis rates for the 12 months prior to COVID-19 and then during the first 12 months of the pandemic were also measured. Statistical analysis to assess mean and standard deviation for relevant variables was used. A p-value of <0.05 was deemed significant. RESULTS: At the end of the study an increase in thrombosis rate (%) in the non-surveillance year was observed ((1.20) thrombosis/patient/year in the surveillance group vs (1.68) thrombosis/patient/year in the non-surveillance group). Monthly mean of thrombosed access during surveillance (M = 3.58, 95% CI 2.19-4.98, SD = 2.193) and non-surveillance (M = 4.92, 95% CI 3.52-6.31, SD = 2.19); t(7148) = 2.051, p = 0.038. CONCLUSION: Reduction in routine Ultrasound surveillance following the COVID-19 pandemic was associated with a significant increase in access thrombosis rate. Further research is needed to unpick whether the associations seen were directly due to service changes, associated with COVID-19 or other factors during the pandemic. This association was independent of SARS-CoV-2 infection status. Clinical teams should consider alternative service delivery options including out-reach, bedside surveillance to balance risks of access thrombosis versus reducing the risk of nosocomial infection with hospital visits.
ABSTRACT
Antarctica is a unique environment due to its extreme meteorological and geological conditions. In addition to this, its relative isolation from human influences has kept it undisturbed. This renders our limited understanding of its fauna and its associated microbial and viral communities a relevant knowledge gap to fill. This includes members of the order Charadriiformes such as snowy sheathbills. They are opportunistic predator/scavenger birds distributed on Antarctic and sub-Antarctic islands that are in frequent contact with other bird and mammal species. This makes them an interesting species for surveillance studies due to their high potential for the acquisition and transport of viruses. In this study, we performed whole-virome and targeted viral surveillance for coronaviruses, paramyxoviruses, and influenza viruses in snowy sheathbills from two locations, the Antarctic Peninsula and South Shetland. Our results suggest the potential role of this species as a sentinel for this region. We highlight the discovery of two human viruses, a member of the genus Sapovirus GII and a gammaherpesvirus, and a virus previously described in marine mammals. Here, we provide insight into a complex ecological picture. These data highlight the surveillance opportunities provided by Antarctic scavenger birds. IMPORTANCE This article describes whole-virome and targeted viral surveillance for coronaviruses, paramyxoviruses, and influenza viruses in snowy sheathbills from the Antarctic Peninsula and South Shetland. Our results suggest an important role of this species as a sentinel for this region. This species' RNA virome showcased a diversity of viruses likely tied to its interactions with assorted Antarctic fauna. We highlight the discovery of two viruses of likely human origin, one with an intestinal impact and another with oncogenic potential. Analysis of this data set detected a variety of viruses tied to various sources (from crustaceans to nonhuman mammals), depicting a complex viral landscape for this scavenger species.
Subject(s)
Charadriiformes , Expeditions , Viruses , Animals , Humans , Antarctic Regions , Virome , Prospective Studies , Birds , Viruses/genetics , Phylogeny , MammalsABSTRACT
BACKGROUND: Understanding factors associated with SARS-CoV-2 exposure risk in the hospital setting may help improve infection control measures for prevention. AIM: To monitor SARS-CoV-2 exposure risk among healthcare workers and to identify risk factors associated with SARS-CoV-2 detection. METHODS: Surface and air samples were collected longitudinally over 14 months spanning 2020-2022 at the Emergency Department (ED) of a teaching hospital in Hong Kong. SARS-CoV-2 viral RNA was detected by real-time reverse-transcription polymerase chain reaction. Ecological factors associated with SARS-CoV-2 detection were analysed by logistic regression. A sero-epidemiological study was conducted in January-April 2021 to monitor SARS-CoV-2 seroprevalence. A questionnaire was used to collect information on job nature and use of personal protective equipment (PPE) of the participants. FINDINGS: SARS-CoV-2 RNA was detected at low frequencies from surfaces (0.7%, N = 2562) and air samples (1.6%, N = 128). Crowding was identified as the main risk factor, as weekly ED attendance (OR = 1.002, P=0.04) and sampling after peak-hours of ED attendance (OR = 5.216, P=0.03) were associated with the detection of SARS-CoV-2 viral RNA from surfaces. The low exposure risk was corroborated by the zero seropositive rate among 281 participants by April 2021. CONCLUSION: Crowding may introduce SARS-CoV-2 into the ED through increased attendances. Multiple factors may have contributed to the low contamination of SARS-CoV-2 in the ED, including hospital infection control measures for screening ED attendees, high PPE compliance among healthcare workers, and various public health and social measures implemented to reduce community transmission in Hong Kong where a dynamic zero COVID-19 policy was adopted.
ABSTRACT
BackgroundSince 1996, epidemiological surveillance of acute respiratory infections (ARI) in Spain has been limited to seasonal influenza, respiratory syncytial virus (RSV) and potential pandemic viruses. The COVID-19 pandemic provides opportunities to adapt existing systems for extended surveillance to capture a broader range of ARI.AimTo describe how the Influenza Sentinel Surveillance System of Castilla y León, Spain was rapidly adapted in 2020 to comprehensive sentinel surveillance for ARI, including influenza and COVID-19.MethodsUsing principles and methods of the health sentinel network, we integrated electronic medical record data from 68 basic surveillance units, covering 2.6% of the regional population between January 2020 to May 2022. We tested sentinel and non-sentinel samples sent weekly to the laboratory network for SARS-CoV-2, influenza viruses and other respiratory pathogens. The moving epidemic method (MEM) was used to calculate epidemic thresholds.ResultsARI incidence was estimated at 18,942 cases per 100,000 in 2020/21 and 45,223 in 2021/22, with similar seasonal fold increases by type of respiratory disease. Incidence of influenza-like illness was negligible in 2020/21 but a 5-week epidemic was detected by MEM in 2021/22. Epidemic thresholds for ARI and COVID-19 were estimated at 459.4 and 191.3 cases per 100,000 population, respectively. More than 5,000 samples were tested against a panel of respiratory viruses in 2021/22.ConclusionExtracting data from electronic medical records reported by trained professionals, combined with a standardised microbiological information system, is a feasible and useful method to adapt influenza sentinel reports to comprehensive ARI surveillance in the post-COVID-19 era.
Subject(s)
COVID-19 , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Tract Infections , Humans , Influenza, Human/epidemiology , Pandemics , COVID-19/epidemiology , Spain/epidemiology , SARS-CoV-2 , Respiratory Tract Infections/epidemiology , Sentinel Surveillance , Respiratory Syncytial Virus Infections/epidemiologyABSTRACT
Millions of SARS-CoV-2 whole genome sequences have been generated to date. However, good quality data and adequate surveillance systems are required to contribute to meaningful surveillance in public health. In this context, the network of Spanish laboratories for coronavirus (RELECOV) was created with the main goal of promoting actions to speed up the detection, analyses, and evaluation of SARS-CoV-2 at a national level, partially structured and financed by an ECDC-HERA-Incubator action (ECDC/GRANT/2021/024). A SARS-CoV-2 sequencing quality control assessment (QCA) was developed to evaluate the network's technical capacity. QCA full panel results showed a lower hit rate for lineage assignment compared to that obtained for variants. Genomic data comprising 48,578 viral genomes were studied and evaluated to monitor SARS-CoV-2. The developed network actions showed a 36% increase in sharing viral sequences. In addition, analysis of lineage/sublineage-defining mutations to track the virus showed characteristic mutation profiles for the Delta and Omicron variants. Further, phylogenetic analyses strongly correlated with different variant clusters, obtaining a robust reference tree. The RELECOV network has made it possible to improve and enhance the genomic surveillance of SARS-CoV-2 in Spain. It has provided and evaluated genomic tools for viral genome monitoring and characterization that make it possible to increase knowledge efficiently and quickly, promoting the genomic surveillance of SARS-CoV-2 in Spain.