ABSTRACT
To treat the novel COronaVIrus Disease (COVID), comparatively fewer medicines have been approved. Due to the global pandemic status of COVID, several medicines are being developed to treat patients. The modern COVID medicines development process has various challenges, including predicting and detecting hazardous COVID medicine responses. Moreover, correctly predicting harmful COVID medicine reactions is essential for health safety. Significant developments in computational models in medicine development can make it possible to identify adverse COVID medicine reactions. Since the beginning of the COVID pandemic, there has been significant demand for developing COVID medicines. Therefore, this paper presents the transfer-learning methodology and a multilabel convolutional neural network for COVID (MLCNN-COV) medicines development model to identify negative responses of COVID medicines. For analysis, a framework is proposed with five multilabel transfer-learning models, namely, MobileNetv2, ResNet50, VGG19, DenseNet201, and Inceptionv3, and an MLCNN-COV model is designed with an image augmentation (IA) technique and validated through experiments on the image of three-dimensional chemical conformer of 17 number of COVID medicines. The RGB color channel is utilized to represent the feature of the image, and image features are extracted by employing the Convolution2D and MaxPooling2D layer. The findings of the current MLCNN-COV are promising, and it can identify individual adverse reactions of medicines, with the accuracy ranging from 88.24% to 100%, which outperformed the transfer-learning model's performance. It shows that three-dimensional conformers adequately identify negative COVID medicine responses. 1225-6463/$ © 2023 ETRI.
ABSTRACT
Online learning has gained a tremendous popularity in the last decade due to the facility to learn anytime, anything, anywhere from the ocean of web resources available. Especially the lockdown all over the world due to the Covid-19 pandemic has brought an enormous attention towards the online learning for value addition and skills development not only for the school/college students, but also to the working professionals. This massive growth in online learning has made the task of assessment very tedious and demands training, experience and resources. Automatic Question generation (AQG) techniques have been introduced to resolve this problem by deriving a question bank from the text documents. However, the performance of conventional AQG techniques is subject to the availability of large labelled training dataset. The requirement of deep linguistic knowledge for the generation of heuristic and hand-crafted rules to transform declarative sentence into interrogative sentence makes the problem further complicated. This paper presents a transfer learning-based text to text transformation model to generate the subjective and objective questions automatically from the text document. The proposed AQG model utilizes the Text-to-Text-Transfer-Transformer (T5) which reframes natural language processing tasks into a unified text-to-text-format and augments it with word sense disambiguation (WSD), ConceptNet and domain adaptation framework to improve the meaningfulness of the questions. Fast T5 library with beam-search decoding algorithm has been used here to reduce the model size and increase the speed of the model through quantization of the whole model by Open Neural Network Exchange (ONNX) framework. The keywords extraction in the proposed framework is performed using the Multipartite graphs to enhance the context awareness. The qualitative and quantitative performance of the proposed AQG model is evaluated through a comprehensive experimental analysis over the publicly available Squad dataset. © 2023, International Journal of Advanced Computer Science and Applications. All Rights Reserved.
ABSTRACT
In 2022, the COVID-19 pandemic is still occurring. One of the optimal prevention efforts is to wear a mask properly. Several previous studies have classified the use of masks incorrectly. However, the accuracy resulting from the classification process is not optimal. This research aims to use the transfer learning method to achieve optimal accuracy. In this research, we used three classes, namely without a mask, incorrect mask, and with a mask. The use of these three classes is expected to be more detailed in detecting violations of the use of masks on the face. The classification method used in this research uses transfer learning as feature extraction and Global Average Pooling and Dense layers as classification layers. The transfer learning models used in this research are MobileNetV2, InceptionV3, and DenseNet201. We evaluate the three models' accuracy and processing time when using video data. The experimental results show that the DenseNet201 model achieves an accuracy of 93%, but the processing time per video frame is 0.291 s. In contrast to the MobileNetV2 model, which produces an accuracy of 89% and the processing speed of each video frame is 0.106 s. This result is inversely proportional to accuracy and speed. The DenseNet201 model produces high accuracy but slow processing time, while the MobileNetV2 model is less accurate but has faster processing. This research can be applied in the crowd center to monitor health protocols in the use of masks in the hope of inhibiting the transmission of the COVID-19 virus. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
ABSTRACT
The COVID-19 pandemic began in December2019 and caused a global crisis. The WHO declared it a pandemic on March 11, 2020. Since October 10, 2020, COVID-19 has affected 200+ countries, causing over 37 million confirmed cases and 1 million deaths. RT-PCR is the usual method for detecting it, but it has drawbacks. Individuals who exhibit symptoms of COVID-19 but receive negative results from RT-PCR tests may be diagnosed with the disease using chest X-rays and CT scans, as these imaging techniques are capable of detecting lung abnormalities that are commonly associated with COVID-19, including consolidation and ground-glass opacities. The detection of COVID-19 systems faces numerous challenges, including false negatives, limited testing capacity, a scarcity of imaging equipment, and a shortage of data. With the increasing number of cases, there is a pressing need for a quicker, more cost-effective screening method. Chest X-ray scans can serve as a supplementary or confirming approach as they are fast and readily available. An Automated Hybrid Convolutional Neural network-Hopfield Neural Network (CHNN) is proposed in this study by extracting the features using VGG-19 for the classification and detection of lung diseases. In this work, both two-fold and multi-class classifications have been done with 99% and 97% accuracy respectively. © 2023 IEEE.
ABSTRACT
The examination of medical images has benefited greatly from the use of artificial intelligence. In contrast to deep learning systems, which do feature extraction automatically and without human interaction, traditional computer vision methods rely on manually produced features that are particular to a certain domain. Having access to medical information for automated analysis is another major factor driving the trend towards deep learning. Chest x-ray pictures are processed in order to segment the lungs and identify diseases in this thesis. Due to its cheap cost, ease of capture, and non-invasive nature, chest x-ray is the most often used medical imaging technology. However, automatic diagnosis in chest x-rays is difficult due to (1) the presence of the rib-cage and clavicle bones, which can obscure abnormalities that are located beneath them, and (2) the fuzzy intensity transitions near the lung and heart, dense abnormalities, rib-cages, and clavicle bones, which make the identification of lung contours subtle. In x-ray image processing, the Convolutional Neural Network (CNN) is the most often used deep learning architecture. Because to the enormous number of parameters in deep CNN architectures, intensive computing resources are required to train these models. Additionally, chest x-ray datasets are often rather tiny, and there is always the risk of overfitting when developing a model. In this dissertation, we propose five convolutional neural networks (CNNs) to identify illness and segment the lungs in chest x-rays. New Line, New Line In the first research paper, an adaptive lightweight convolutional neural network (ALCNN) is created to detect pneumothorax with few parameters. The model readjusts the feature calibration channel-wise using the convolutional layer and attention mechanism. The suggested model outperformed state-of-the-art deep models trained using three different transfer learning methods. One notable aspect of the suggested model is that it requires ten times less parameters than the best deep models currently available. The second paper suggests the FocusCovid methodology for identifying COVID-19. © 2023 IEEE.
ABSTRACT
This editorial summarises the special issue entitled "Deep Learning Blockchain-enabled Technology for Improved Healthcare Industrial Systems”, which deals with the intersection and use of deep learning and blockchain technologies in the healthcare industry. This special issue consists of eleven scientific articles. © 2023 by the author(s). Licensee Prague University of Economics and Business, Czech Republic.
ABSTRACT
Image classification and segmentation techniques are still very popular in the medical field (for healthcare), in which the medical image plays an important role in the detection and screening of diseases. Recently, the spread of new viral diseases, namely Covid-19, requires powerful computer models and rich resources (datasets) to fight this phenomenon. In this study, we propose to examine the CNN Deep Learning algorithm and two Transfer Learning models, namely RestNet50 and MobileNetV2 using the pretrained model of the ImageNet database, experimented on the new dataset (COVID-QU-Ex Dataset 2022) offered by the University of Qatar. These models are tested to classify radiography images into two classes (Covid19 and Normal). The results achieved by CNN (Acc =95.97%), ResNet50 (Acc =95.53%) and MobileNetV2 (Acc =97.32%) show that these algorithms are promising in order to combat this Covid-19 disease by detecting it through thoracic images (Chest X-ray type). © 2023 IEEE.
ABSTRACT
Face mask image recognition can detect and monitor whether people wear the mask. Currently, the mask recognition model research mainly focuses on different mask detection systems. However, these methods have limited working datasets, do not give safety alerts, and do not work appropriately on masks. This paper aims to use the face mask recognition detection model in public places to monitor the people who do not wear the mask or the wrong mask to reduce the spread of Covid-19. The mask detection model supports transfer learning and image classification. Specifically, the collected data are first collected and then divided into two parts: with_mask and without_mask. Then authors build, implement the model, and obtain accurate mask recognition models. This paper uses and size of images datasets tested respectively. The experimental results show that the effect of the image size of was relatively better, and the training accuracy of different MobileNetV2 models is about 95%. Our analysis demonstrates that MobileNetV2 can correctly classify Covid-19. © 2022 ACM.
ABSTRACT
COVID-19 crisis has led to an outburst of information that needs to be organized, validated, and made available to the seekers. Despite the rapid growth and success of BERT models in the last 3 years, COVID QA is a difficult task due to the lack of applicable datasets and a relevant language representation. Therefore, this study proposes a transformer-based Question Answering (QA) model for COVID-19 questions from the biomedical domain. Further, explored several datasets, and models required for question type prediction, no-Answer prediction, and answer extraction and transfer learning strategies. It has been demonstrated that the exact match score can be significantly improved with limited amounts of training data from the biomedical domain. Finally, the findings of the study have been summarized as Factoid QA Finetuning Framework (FQFF), which can provide initial direction for domain-specific QA tasks with a limited amount of data. © 2023 IEEE.