Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.005
Filter
1.
Advances in Colloid & Interface Science ; 303:N.PAG-N.PAG, 2022.
Article in English | Academic Search Complete | ID: covidwho-1838648

ABSTRACT

COVID-19 is caused via the SARS-CoV-2 virus, a lipid-based enveloped virus with spike-like projections. At present, the global epidemic of COVID-19 continues and waves of SARS-CoV-2, the mutant Delta and Omicron variant which are associated with enhanced transmissibility and evasion to vaccine-induced immunity have increased hospitalization and mortality, the biggest challenge we face is whether we will be able to overcome this virus? On the other side, warm seasons and heat have increased the need for proper ventilation systems to trap contaminants containing the virus. Besides, heat and sweating accelerate the growth of microorganisms. For example, medical staff that is in the front line use masks for a long time, and their facial sweat causes microbes to grow on the mask. Nowadays, efficient air filters with anti-viral and antimicrobial properties have received a lot of attention, and are used to make ventilation systems or medical masks. A wide range of materials plays an important role in the production of efficient air filters. For example, metals, metal oxides, or antimicrobial metal species that have anti-viral and antimicrobial properties, including Ag, ZnO, TiO 2 , CuO, and Cu played a role in this regard. Carbon nanomaterials such as carbon nanotubes, graphene, or derivatives have also shown their role well. In addition, natural materials such as biopolymers such as alginate, and herbal extracts are employed to prepare effective air filters. In this review, we summarized the utilization of diverse materials in the preparation of efficient air filters to apply in the preparation of medical masks and ventilation systems. In the first part, the employing metal and metal oxides is examined, and the second part summarizes the application of carbon materials for the fabrication of air filters. After examination of the performance of natural materials, challenges and progress visions are discussed. [Display omitted] • Along with promoting vaccination, the use of face masks and good ventilation systems are essential. • To deal with the COVID-19 outbreak, antimicrobial-based materials are effective. • Air filters incorporated with anti-viral metals and metal oxides effectively eliminate viral. • Airborne pollutants including aerosols are removed using antimicrobial carbon-based filters. • Air filters-based anti-viral natural materials can catch and sanitize airborne viral. [ FROM AUTHOR] Copyright of Advances in Colloid & Interface Science is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

2.
Biochemical & Biophysical Research Communications ; 606:128-134, 2022.
Article in English | Academic Search Complete | ID: covidwho-1838563

ABSTRACT

High-resolution melting (HRM) analysis was performed to detect G339D and D796Y variations in the SARS-CoV-2 Omicron variant spike protein. We employed two-step PCR consisting of the first RT–PCR and the second nested PCR to prepare the amplicon for HRM analysis. The melting temperatures (Tm) of the amplicon from the cDNA of the Omicron variant receptor binding domain (RBD) were 73.1 °C (G339D variation) and 75.1 °C (D796Y variation), respectively. These Tm values were clearly distinct from those of SARS-CoV-2 isolate Wuhan-Hu-1. HRM analysis after the two-step PCR was conducted on Omicron variant-positive specimens. The HRM curve and Tm value obtained with the Omicron variant-positive specimen were coincident with those of the amplicon from cDNA of the Omicron variant RBD. Our study demonstrates the utility of HRM analysis after two-step PCR for the detection of mutations in SARS-CoV-2 gene. • RT-PCR and HRM analysis after nested PCR were employed for detection of specific variations in SARS-CoV-2 spike protein. • G339D and D796Y variations were detected by post-nested PCR high-resolution melting analysis. • Tm of the amplicon from the cDNA of the Omicron variant were clearly distinct from those of SARS-CoV-2 isolate Wuhan-Hu-1. • HRM analysis after nested PCR can be applied to the detection of various mutations in SARS-CoV-2 gene. [ FROM AUTHOR] Copyright of Biochemical & Biophysical Research Communications is the property of Academic Press Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

3.
2021 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2021 ; : 518-523, 2021.
Article in English | Scopus | ID: covidwho-1832577

ABSTRACT

This study focuses on how scientifically-correct information is disseminated through social media, and how misinformation can be corrected. We have identified examples on Twitter where scientific terms that have been misused have been rectified and replaced by scientifically-correct terms through the interaction of users. The results show that the percentage of correct terms ("variant (åCurrency sign‰ç•°æ "or "COVID-19 variant (åCurrency sign‰ç•°ã▪ãCurrency signã«ã)") being used instead of the incorrect terms ("strain (åCurrency sign‰ç•°ç®)") on Twitter has already increased since the end of December 2020. This was about a month before the release of an official statement by the Japanese Association for Infectious Diseases regarding the correct terminology, and the use of terms on social media was faster than it was in television. Some Twitter users who quickly started using the correct term were more likely to retweet messages sent by leading influencers on Twitter, rather than messages sent by traditional media or portal sites. However, a few Twitter users continued to use wrong terms even after March 2021, even though the use of the correct terms was widespread. Further analysis of their tweets revealed that they were quoting sources that differed from that of other users. This study empirically verified that self-correction occurs even on Twitter, which is often known as a "hotbed for spreading rumors."The results of this study also suggest that influencers with expertise can influence the direction of public opinion on social media and that the media that users usually cite can also affect the possibility of behavioral changes. © 2021 ACM.

4.
Embase; 2022.
Preprint in English | EMBASE | ID: ppcovidwho-335156

ABSTRACT

Sublineages of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) Omicron variants continue to amass mutations in the spike (S) glycoprotein, which leads to immune evasion and rapid spread of the virus across the human population. Here we demonstrate the susceptibility of the Omicron variant BA.1 (B.1.1.529.1) to four repurposable drugs, Methylene blue (MB), Mycophenolic acid (MPA), Posaconazole (POS), and Niclosamide (Niclo) in post-exposure treatments of primary human airway cell cultures. MB, MPA, POS, and Niclo are known to block infection of human nasal and bronchial airway epithelial explant cultures (HAEEC) with the Wuhan strain, and four variants of concern (VoC), Alpha (B.1.1.7), Beta (B.1.351), Gamma (B.1.1.28), Delta (B.1.617.2) (1, 2). Our results not only show broad anti-coronavirus effects of MB, MPA, POS and Niclo, but also demonstrate that the Omicron variant BA.1 (B.1.1.529.1) sheds infectious virus from HAEEC over at least 15 days, and maintains both intracellular and extracellular viral genomic RNA without overt toxicity, suggesting viral persistence. The data underscore the broad effects of MB, MPA, POS, and Niclo against SARS-CoV-2 and the currently circulating VoC, and reinforce the concept of repurposing drugs in clinical trials against COVID-19.

5.
Embase; 2022.
Preprint in English | EMBASE | ID: ppcovidwho-335010

ABSTRACT

Variants of concern (VOCs) of SARS-CoV-2 have caused resurging waves of infections worldwide. In the Netherlands, Alpha, Beta, Gamma and Delta variants circulated widely between September 2020 and August 2021. To understand how various control measures had impacted the spread of these VOCs, we analyzed 39,844 SARS-CoV-2 genomes collected under the Dutch national surveillance program. We found that all four VOCs were introduced before targeted flight restrictions were imposed on countries where the VOCs first emerged. Importantly, foreign introductions, predominantly from other European countries, continued during these restrictions. Our findings show that flight restrictions had limited effectiveness in deterring VOC introductions due to the strength of regional land travel importation risks. We also found that the Alpha and Delta variants largely circulated more populous regions with international connections after their respective introduction before asymmetric bidirectional transmissions occurred with the rest of the country and the variant dominated infections in the Netherlands. As countries consider scaling down SARS-CoV-2 surveillance efforts in the post-crisis phase of the pandemic, our results highlight that robust surveillance in regions of early spread is important for providing timely information for variant detection and outbreak control.

6.
Embase; 2022.
Preprint in English | EMBASE | ID: ppcovidwho-334871

ABSTRACT

The emerging SARS-CoV-2 variants of concern (VOCs) exhibit enhanced transmission and immune escape, reducing the efficacy and effectiveness of the two FDA-approved mRNA vaccines. Here, we explored various strategies to develop novel mRNAs vaccines to achieve safer and wider coverage of VOCs. Firstly, we constructed a cohort of mRNAs that feature a furin cleavage mutation in the spike (S) protein of predominant VOCs, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2). Not present in the mRNA vaccines currently in use, the mutation abolished the cleavage between the S1 and S2 subunits, potentially enhancing the safety profile of the immunogen. Secondly, we systematically evaluated the induction of neutralizing antibodies (nAb) in vaccinated mice, and discovered that individual VOC mRNAs elicited strong neutralizing activity in a VOC-specific manner. Thirdly, the IgG produced in mice immunized with Beta-Furin and Washington (WA)-Furin mRNAs showed potent cross-reactivity with other VOCs, which was further corroborated by challenging vaccinated mice with the live virus of VOCs. However, neither WA-Furin nor Beta-Furin mRNA elicited strong neutralizing activity against the Omicron variant. Hence, we further developed an Omicron-specific mRNA vaccine that restored protection against the original and the sublineages of Omicron variant. Finally, to broaden the protection spectrum of the new Omicron mRNA vaccine, we tested the concept of bivalent immunogen. Instead of just fusing two RBDs head-to-tail, we for the first time constructed an mRNA-based chimeric immunogen by introducing the RBD of Delta variant into the entire S antigen of Omicron. The resultant chimeric mRNA was capable of inducing potent and broadly acting nAb against Omicron (both BA.1 and BA.2) and Delta, which paves the way to develop new vaccine candidate to target emerging variants in the future.

7.
Embase; 2022.
Preprint in English | EMBASE | ID: ppcovidwho-334841

ABSTRACT

Coronavirus disease 2019 continues to batter the world with the unceasing introduction of new variants of the causative virus, SARS-CoV-2. In order to understand differences in disease caused by variants of concern and to develop variant-specific vaccines, suitable small animal models are required that mimic disease progression in humans at various stages of life. In this study, we compared the dynamics of infection with two SARS-CoV-2 variants of concern (Delta and Omicron) in aged (>1 year 3 months old) and young (<5 weeks old) Syrian hamsters (Mesocricetus auratus). We show that no weight loss occurred in Omicron infected groups regardless of age, while infection with the Delta variant caused weight loss of up to 10% by day 7 post-infection with slower and incomplete recovery in the aged group. Omicron replicated to similar levels as Delta in the lungs, trachea and nasal turbinates, with no significant differences in the tissue viral loads of aged versus young animals for either variant. In contrast to rare necrosis observed in Omicron-infected animals regardless of age, severe necrosis was observed in the olfactory epithelium in Delta-infected animals. Omicron infection also resulted in mild pulmonary disease in both young and aged animals compared to the moderate acute necrotizing bronchointerstitial pneumonia seen in Delta-infected animals. These results suggest that Omicron infection results in an attenuated clinical disease outlook in Syrian hamsters compared to infection with the Delta variant irrespective of age.

8.
Embase; 2021.
Preprint in English | EMBASE | ID: ppcovidwho-334677

ABSTRACT

We conducted preclinical studies in mice using a yeast-produced SARS-CoV-2 RBD subunit vaccine candidate formulated with aluminum hydroxide (alum) and CpG deoxynucleotides. This formulation is equivalent to the CorbevaxTM vaccine that recently received emergency use authorization by the Drugs Controller General of India. We compared the immune response of mice vaccinated with RBD/alum to mice vaccinated with RBD/alum+CpG. We also evaluated mice immunized with RBD/alum+CpG and boosted with RBD/alum. Mice were immunized twice intramuscularly at a 21-day interval. Compared to two doses of the/alum formulation, the RBD/alum+CpG vaccine induced a stronger and more balanced Th1/Th2 cellular immune response, with high levels of neutralizing antibodies against the original Wuhan isolate of SARS-CoV-2 as well as the B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 and (Delta) variants. Neutralizing antibody titers against the B.1.1.529 (BA.1, Omicron) variant exceeded those in human convalescent plasma after Wuhan infection but were lower than against the other variants. Interestingly, the second dose did not benefit from the addition of CpG, possibly allowing dose-sparing of the adjuvant in the future. The data reported here reinforces that the RBD/alum+CpG vaccine formulation is suitable for inducing broadly neutralizing antibodies against SARS-CoV-2 including variants of concern.

9.
Embase; 2021.
Preprint in English | EMBASE | ID: ppcovidwho-334672

ABSTRACT

Based on its predicted ability to affect transmissibility and pathogenesis, surveillance studies have highlighted the role of a specific mutation (P681R) in the S1/S2 furin cleavage site of the SARS-CoV-2 spike protein. Here we analyzed A.23.1, first identified in Uganda, as a P681R-containing virus several months prior to the emergence of B.1.617.2 (Delta variant). We performed assays using peptides mimicking the S1/S2 from A.23.1 and B.1.617 and observed significantly increased cleavability with furin compared to both an original B lineage (Wuhan-Hu1) and B.1.1.7 (Alpha variant). We also performed cell-cell fusion and functional infectivity assays using pseudotyped particles and observed an increase in activity for A.23.1 compared to an original B lineage spike. However, these changes in activity were not reproduced in the B lineage spike bearing only the P681R substitution. Our findings suggest that while A.23.1 has increased furin-mediated cleavage linked to the P681R substitution, this substitution needs to occur on the background of other spike protein changes to enable its functional consequences.

10.
Embase; 2020.
Preprint in English | EMBASE | ID: ppcovidwho-334596

ABSTRACT

The current SARS-CoV-2/COVID-19 pandemic wreaks medical and socioeconomic havoc. Despite the availability of vaccines, cost-effective acute treatment options preventing morbidity and mortality are urgently needed. To identify affordable, ubiquitously available, and effective treatments, we tested herbs consumed worldwide as herbal teas regarding their antiviral activity against SARS-CoV-2. Aqueous infusions prepared by boiling leaves of the Lamiaceae perilla and sage elicit potent and sustained antiviral activity against SARS-CoV-2 in therapeutic as well as prophylactic regimens. The herbal infusions exerted antiviral effects comparable to interferon-β and remdesivir but outperformed convalescent sera and interferonα2 upon short-term treatment early after infection. Based on protein fractionation analyses, we identified caffeic acid, perilla aldehyde, and perillyl alcohol as antiviral compounds. Global mass spectrometry (MS) analyses performed comparatively in two different cell culture infection models revealed changes of the proteome upon treatment with herbal infusions and provided insights into the mode of action. As inferred by the MS data, induction of heme oxygenase 1 (HMOX-1) was confirmed as effector mechanism by the antiviral activity of the HMOX-1-inducing compounds sulforaphane and fraxetin. In conclusion, herbal teas based on perilla and sage exhibit antiviral activity against SARS-CoV-2 including variants of concern such as Alpha, Beta, Delta, and Omicron.

11.
Science ; 376(6592):439-439, 2022.
Article in English | Academic Search Complete | ID: covidwho-1823562

ABSTRACT

The article presents the discussion on vaccines protecting most recipients against severe illness but effectiveness against infection especially by Omicron including measuring antibodies which being generated by exposure to the virus.

12.
Cureus Journal of Medical Science ; 14(4):6, 2022.
Article in English | Web of Science | ID: covidwho-1822582

ABSTRACT

Introduction In Pakistan, the fourth wave of coronavirus disease 2019 (Covid-19) started around July 2021, which was dominated by the Delta variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The vaccination drive to immunize the people of Pakistan against Covid-19 was also going on during this period. There were multiple types of vaccines being administered to the people of Pakistan, as the vaccines had been procured from multiple sources. Some people had apprehensions about different vaccines being administered in the country. The purpose of this study was to compare the clinical characteristics and outcome of the patients vaccinated against Covid-19 with those of the non-vaccinated patients during the fourth wave of Covid-19 in Pakistan Naval Ship (PNS) Shifa Hospital. Methods The cross-sectional descriptive study was performed at PNS Shifa Hospital Karachi, from July to October 2021. All the Covid-19 patients treated in PNS Shifa Hospital during the "fourth Covid-19 wave" were interviewed. Their medical records were accessed, and they were followed up till their discharge from the hospital. The vaccinated and non-vaccinated patients were compared for differences in their age or gender distribution, the severity of illness, comorbidities, and mortality. Results There were 884 participants in the study: 664 (75.11%) men and 220 (24.89%) women. There were 493 patients below 40 years of age, 233 were 40-59 years old, and 158 were aged 60 and above. One hundred and sixty-nine patients had one or more comorbidities, including hypertension, diabetes mellitus, ischemic heart disease, various malignancies, bronchial asthma, and chronic kidney disease. There were 63 (7.13%) obese patients, 28 of whom developed severe disease. Five hundred and four (57%) patients were vaccinated and 380 (47%) were non-vaccinated. Among the vaccinated patients, the effect of Covid-19 was mild in 58.37%, moderate in 36.11%, severe in 0.79%, and critical in 4.37%. Among the non-vaccinated patients, the effect of Covid-19 was mild in 40.26%, moderate in 46.58%, severe in 3.16%, and critical in 10%. The difference in disease severity between the two groups was statistically significant (p<0.05). Conclusion Vaccinated Covid-19 patients had significantly lower severity of disease and displayed better outcomes when compared to non-vaccinated patients during the fourth Covid-19 wave dominated by the Delta variant of the SARS-CoV-2 virus.

13.
PeerJ ; 10, 2022.
Article in English | EMBASE | ID: covidwho-1822578

ABSTRACT

Background. It remains unclear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection started, spread worldwide, and mutated to result in the present variants. This difficulty can be attributed to the limitations associated with the analytical methodology for presenting the differences among genomic sequences. In this study, we critically analysed the early data to explain the start and spread of the pandemic. Methods. Objective analyses of the RNA sequences of earlier variants of SARS-CoV-2 (up to September 1, 2020, available in DDBJ and GISAID) were performed using Principal Component Analysis (PCA). The results were compared with information on the collection dates and location. The PCA was also conducted for 12 variants of interest to the WHO as of September 2021, and compared with earlier data. Results. The pandemic began in Wuhan, China. This strain was suspected to be related to other reported animal viruses;however, they had a minimal similarity. The strain then spreads via three routes while accumulating mutations. Several viral subgroups were identified along the routes, each with a large number of patients reported, indicating high infectivity to humans. These routes were only confirmed by the early data analysis, because newer variants would have more mutations, and would be preferentially be examined by PCA if they were included. On the original axes found in the early variants, the newer variants revealed that they retained previously acquired mutations, which helped to reveal the viral ancestors of the newer variants. The rate of mutation was found to be comparable to that of the influenza H1N1 virus, which causes recurrent seasonal epidemics. Another threat imposed by SARS-CoV-2 is that if the pandemic cannot be contained, new variants may emerge annually, preventing herd immunity. DOI 10.7717/peerj.12681

14.
Vaccines ; 10(4), 2022.
Article in English | EMBASE | ID: covidwho-1822473

ABSTRACT

In response to the SARS-CoV-2 Delta variant, which partially escaped the vaccine-induced immunity provided by two doses of vaccination with CoronaVac (Sinovac), the National Vaccine Committee recommended the heterologous CoronaVac-ChAdOx1 (Oxford–AstraZeneca), a prime– boost vaccine regimen. This pilot study aimed to describe the immunogenicity and adverse events of the heterologous CoronaVac-ChAdOx1 regimen, in comparison with homologous CoronaVac, and homologous ChAdOx1. Between May and August 2021, we recruited a total of 354 participants from four vaccination groups: the CoronaVac-ChAdOx1 vaccinee (n = 155), the homologous CoronaVac vaccinee (n = 32), the homologous ChAdOx1 vaccinee (n = 47), and control group of COVID-19 patients (n = 120). Immunogenicity was evaluated by measuring the level of IgG antibodies against the receptor-binding domain (anti-SRBD) of the SARS-CoV-2 spike protein S1 subunit and the level of neutralizing antibodies (NAbs) against variants of concern (VOCs) using the plaque reduction neutralization test (PRNT) and pseudovirus neutralization test (pVNT). The safety profile was recorded by interviewing at the 1-month visit after vaccination. The anti-SRBD level after the second booster dose of the CoronaVac-ChAdOx1 group at 2 weeks was higher than 4 weeks. At 4 weeks after the second booster dose, the anti-SRBD level in the CoronaVac-ChAdOx1 group was significantly higher than ei-ther homologous CoronaVac, the homologous ChAdOx1 group, and Control group (p < 0.001). In the CoronaVac-ChAdOx1 group, the PRNT50 level against the wild-type (434.5 BAU/mL) was the high-est;followed by Alpha variant (80.4), Delta variant (67.4), and Beta variant (19.8). The PVNT50 level was also found to be at its highest against the wild-type (432.1);followed by Delta variants (178.3), Alpha variants (163.9), and Beta variant (42.2), respectively. The AEs in the CoronaVac-ChAdOx1 group were well tolerated and generally unremarkable. The CoronaVac-ChAdOx1 heterologous regimen induced higher immunogenicity and a tolerable safety profile. In a situation when only CoronaVac-ChAdOx1 vaccines are available, they should be considered for use in responding to the Delta variant.

15.
Viruses ; 14(5), 2022.
Article in English | EMBASE | ID: covidwho-1822443

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), especially emerging variants, poses an increased threat to global public health. The significant reduction in neutralization activity against the variants such as B.1.351 in the serum of convalescent patients and vaccinated people calls for the design of new potent vaccines targeting the emerging variant. However, since most vaccines approved and in clinical trials are based on the sequence of the original SARS-CoV-2 strain, the immunogenicity and protective efficacy of vaccines based on the B.1.351 variant remain largely unknown. In this study, we evaluated the immunogenicity, induced neutralization activity, and protective efficacy of wild-type spike protein nanoparticle (S-2P) and mutant spike protein nanoparticle (S-4M-2P) carrying characteristic mutations of B.1.351 variant in mice. Although there was no significant difference in the induction of spike-specific IgG responses in S-2P-and S-4M-2P-immunized mice, neutralizing antibodies elicited by S-4M-2P exhibited noteworthy, narrower breadth of reactivity with SARS-CoV-2 variants compared with neutralizing antibodies elicited by S-2P. Furthermore, the decrease of induced neutralizing antibody breadth at least partly resulted from the amino acid substitution at position 484. Moreover, S-4M-2P vaccination conferred insufficient protection against live SARS-CoV-2 virus infection, while S-2P vaccination gave definite protection against SARS-CoV-2 challenge in mice. Together, our study provides direct evidence that the E484K substitution in a SARS-CoV-2 subunit protein vaccine limited the cross-reactive neutralizing antibody breadth in mice and, more importantly, draws attention to the unfavorable impact of this mutation in spike protein of SARS-CoV-2 variants on the induction of potent neutralizing antibody responses.

16.
Chinese Medicine (United Kingdom) ; 17(1), 2022.
Article in English | EMBASE | ID: covidwho-1822198

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) causes a global pandemic and has devastating effects around the world, however, there are no specific antiviral drugs and vaccines for the constant mutation of SARS-CoV-2. Purpose: In this study, we evaluted the antiviral and anti-inflammatory activities of Liushen Capsules (LS) on different novel coronavirus in vitro, studied its therapeutic effects on novel SARS-CoV-2 infected mice and observed the LS’s clinical efficacy and safety in COVID-19. Methods: The antiviral and aiti-inflammatory effects of LS on the 501Y.V2/B.1.35 and G/478K.V1/ B.1.617.2 strains were determined in vitro. A hACE2 mouse model of novel SARS-CoV-2 pneumonia was established. Survival rates, histological changes, inflammatory markers, lung virus titers and the expression of the key proteins in the NF-κB/MAPK signaling pathway was detected by western blotting and immumohistochemical staining in the lungs were measured. Subsequently, the disease duration, prognosis of disease, time of negative nucleic acid and the cytokines levels in serum were used to assess the efficacy of treatment with LS in patients. Results: The results showed that LS (2, 1, 0.5 μg/mL) could significantly inhibit the replication of the two SARS-CoV-2 variants and the expression of pro-inflammatory cytokines (IL-6, IL-8, IP-10, CCL-5, MIP-1α, IL-1α) induced by the virus in vitro. As for the survival experiment in mice, the survival rate of virus group was 20%, while LS-treatment groups (40, 80, 160 mg/kg) could increase the survival rate to 60, 100 and 100%, respectively. LS (40, 80, 160 mg/kg) could significantly decrease the lung titers in mice and it could improve the pathological changes, inhibit the excessive inflammatory mediators (IFN-α, IFN-γ, IP-10, MCP-1) and the protein expression of p-NF-κB p65 in mice. Moreover, LS could significantly decrease SARS-CoV-2-induced activation of p-NF-κB p65, p-IκBα, and p-p38 MAPK and increase the protein expression of the IκBα. In addition, the patient got complete relief of symptoms after being treated with LS for 6 days and was proven with negative PCR test after being treated for 23 days. Finally, treatment with LS could reduce the release of inflammatory cytokines (IL-6, PDGF-AA/BB, Eotaxin, MCP-1, MIP-1α, MIP-1β, GRO, CCL-5, MCP-3, IP-10, IL-1α). Conclusion: LS effectively alleviated novel SARS-CoV-2 or variants induced pneumonia in vitro and in vivo, and improved the prognosis of COVID-19. In light of the efficacy and safety profiles, LS could be considered for the treatment of COVID-19 with a broad-spectrum antiviral and anti-inflammatory agent.

17.
Science of The Total Environment ; : 155767, 2022.
Article in English | ScienceDirect | ID: covidwho-1821477

ABSTRACT

The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5–11 December, to 17.5% (25/143 samples) in the week 12–18, to 65.9% (89/135 samples) in the week 19–25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased from one in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons. In conclusion, we designed an RT-qPCR assay capable to detect the Omicron variant, which can be successfully used for the purpose of wastewater-based epidemiology. We also described the history of the introduction and diffusion of the Omicron variant in the Italian population and territory, confirming the effectiveness of sewage monitoring as a powerful surveillance tool.

18.
eBioMedicine ; 80:104025, 2022.
Article in English | ScienceDirect | ID: covidwho-1821211

ABSTRACT

Summary Background Evolutionary pressure has led to the emergence of SARS-CoV-2 variants, with the most recent Omicron variant containing an unparalleled 30 mutations in the spike protein. Many of these mutations are expected to increase immune evasion, thus making breakthrough cases and re-infection more common. Methods From June 2020 to December 2021 serial blood samples (initial post recovery, 6 months, 12 months) were collected from a COVID-19 convalescent cohort in Boston, MA. Plasma was isolated for use in Mesoscale Discovery based antibody binding assays. Unvaccinated donors or those vaccinated prior to the primary blood draw were excluded from this analysis, as were those who did not have at least two blood draws. Wilcoxon signed rank tests were used to compare pre- and post-vaccination titers and antibody response against different variants, while McNemar tests were used to compare the proportions of achieving ≥ 4 fold increases against different variants. Findings Forty-eight COVID convalescent donors with post-infection vaccination (hybrid immunity) were studied to evaluate the levels of cross-reactive antibodies pre- and post- vaccination against various SARS-CoV-2 Spike and RBD proteins. Vaccination with BNT162b2, mRNA-1273 or Ad26.COV2.S led to a 6.3 to 7.8 fold increase in anti-Spike antibody titers and a 7·0 to 7·4 fold increase in anti-WT, Alpha and Delta RBD antibody. However, a lower response was observed for Beta and Omicron RBDs with only 7/48 (15%) and 15/48 (31%) donors having a ≥4 fold increase in post-vaccination titers against Beta and Omicron RBDs. Structural analysis of the Beta and Omicron RBDs reveal a shared immune escape strategy involving residues K417-E484-N501 that is exploited by these variants of concern. Interpretation Through mutations of the K417-E484-N501 triad, SARS-CoV-2 has evolved to evade neutralization by the class I/II anti-RBD antibody fraction of hybrid immunity plasma as the polyclonal antibody response post-vaccination shows limitations in the ability to solve the structural requirements to bind the mutant RBDs. Funding Massachusetts Consortium on Pathogen Readiness (280870.5116709.0016) and the National Institute of Allergy and Infectious Diseases (1R01AI161152-01A1).

19.
Biosafety and Health ; 2022.
Article in English | ScienceDirect | ID: covidwho-1821155

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, generating new variants that pose a threat to global health;therefore, it is imperative to obtain safe and broad-spectrum antivirals against SARS-CoV-2 and its variants. To this end, we screened compounds for their ability to inhibit viral entry, which is a critical step in virus infection. Twenty compounds that have been previously reported to inhibit SARS-CoV-2 replication were tested by using pseudoviruses containing the spike protein from the original Wuhan lineage (SARS-CoV-2-WH01). The cytotoxicity of these compounds was determined. Furthermore, we identified six compounds with strong antagonistic activity against the WH01 pseudovirus, and low cytotoxicity was identified. These compounds were then evaluated for their efficacy against pseudoviruses expressing the spike protein from B.1.617.2 (Delta) and B.1.1.529 (Omicron), the two most prevalent circulating strains. These assays demonstrated that two phenothiazine compounds, trifluoperazine 2HCl, and thioridazine HCl, inhibit the infection of Delta and Omicron pseudoviruses. Finally, we discovered that these two compounds were highly effective against authentic SARS-CoV-2 viruses, including the WH01, Delta, and Omicron strains. Our study identified potential broad-spectrum SARS-CoV-2 inhibitors and provided insight into the development of novel therapeutics.

20.
Biomedical Journal ; 2022.
Article in English | ScienceDirect | ID: covidwho-1821151

ABSTRACT

s Despite the rising natural and vaccines mediated immunity, several countries have experienced a resurgence of the Coronavirus disease of 2019 (COVID-19) due to emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. From Alpha to Omicron, the variants of concern (VOC) have evolved several spike protein mutations that may have impact on virus characteristics, such as transmissibility and antigenicity. In this review, we describe the evolution of SARS-CoV-2, summarize current knowledge of epidemiological and clinical features of the variants, and discuss the response strategies in terms of vaccines to reduce the burden of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL