Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Research Journal of Pharmacy and Technology ; 15(4):1653-1658, 2022.
Article in English | EMBASE | ID: covidwho-1929143

ABSTRACT

World Health Organization (WHO) has assessed that coronavirus disease 2019 (COVID-19) as an epidemic. However, an effective antiviral for COVID-19 is still uncertain. Since the onset of the outbreak, the scientific and clinical community keep proposing many agents that would have efficacy against COVID-19. Arbidol is an indole core with proven effectiveness against influenza over the past few years apart from critics. The concrete hypothesis of arbidol interaction with spike glycoprotein prevents the entry of virus. Further, demonstrated clinical efficiency of arbidol against RNA virus and broad-spectrum inhibition of influenza A and B virus, adenovirus, and other viruses, including hepatitis C virus, drives us to seek more understating of the molecule and its clinical possibilities. In this review, we attempt to describe the many possible hypotheses of arbidol against Covid-19.

2.
Food Chem X ; 14: 100302, 2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1796842

ABSTRACT

Kombucha, originated in China 2000  years ago, is a sour and sweet-tasted drink, prepared traditionally through fermentation of black tea. During the fermentation of kombucha, consisting of mainly acidic compounds, microorganisms, and a tiny amount of alcohol, a biofilm called SCOBY forms. The bacteria in kombucha has been generally identified as Acetobacteraceae. Kombucha is a noteworthy source of B complex vitamins, polyphenols, and organic acids (mainly acetic acid). Nowadays, kombucha is tended to be prepared with some other plant species, which, therefore, lead to variations in its composition. Pre-clinical studies conducted on kombucha revealed that it has desired bioactivities such as antimicrobial, antioxidant, hepatoprotective, anti-hypercholestorelomic, anticancer, anti-inflammatory, etc. Only a few clinical studies have been also reported. In the current review, we aimed to overhaul pre-clinical bioactivities reported on kombucha as well as its brief compositional chemistry. The literature data indicate that kombucha has valuable biological effects on human health.

3.
Natural Volatiles & Essential Oils ; 9(1):861-876, 2022.
Article in English | GIM | ID: covidwho-1787449

ABSTRACT

Since its inception in 2019 from China, the novel Coronavirus has caused an unprecedented havoc in the economic and public health sector. Many countries were forced to close their borders and cross-border interactions in order to limit the spread of the disease. Furthermore, many economic and commercial activities were adversely affected as many businesses had to close. The only ones that the pandemic spared were the ones providing essential services. By March 2020, many public healthcare facilities had already been overrun. Other governments devised alternative means of managing significant cases of COVID-19, such as introducing home-based care to give room for more critical cases to be taken care of in intensive care units. It is imperative to identify the disease's risk factors to mitigate the unexpected devastation caused by the SARS-CoV-2. Global epidemiological results indicate that men, especially the elderly, are more susceptible to Coronavirus infection. The number of reported Coronavirus cases varies by gender, and this disparity continues to grow in favor of male participants until they reach the age of 60. Other studies have also established that men more than women are susceptible to coronavirus infection. Further, male patients diagnosed with coronavirus infection were shown to have an elevated mortality rate. SARS-CoV-2 is the Covid-19 pathogen that is transmitted via respiratory globules, through indirect or direct interaction. Evaluation of the genome has revealed that SARS-CoV-2 is 79% similar to SARS-CoV-2;they employ ACE2 receptors to attack cells, meanwhile it has been established that TMPRSS2 promotes ACE2, therefore causing more severe reactions in comparison to the other types of coronaviruses. Studies describe ACE2 as a gateway for viruses to enter cells. It is directly associated with the COVID-19 clinical symptoms. Research has shown that TMPRSS2 and ACE2 are expressed in the male reproductive system tract and testis and are controlled by testosterone. Thus, the male reproductive system has all the mechanism needed to bid SARs-CoV-2, and these possibilities raise the capability of ACE2 and TMPRSS2 as potential vectors of COVID-19. This review examines how the novel Coronavirus find its way into the human cells through known receptors such as ACE2, antibody Fcy R, etc. The examination is also done on the mechanisms of its spike proteins transition with the help of proteases such as cathepsins, Furin, and TMPRSS2. The study reviewed six articles selected based on PRISMA criteria.

4.
Phytomed Plus ; 1(4): 100058, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1157665

ABSTRACT

Background: The corona virus disease 2019 (COVID-19) pandemic has highlighted the fact that there are few effective antiviral agents for treating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Although the very recent development of vaccines is an extremely important breakthrough, it remains unclear how long-lived such vaccines will be. The development of new agents therefore remains an important goal. Purpose: Given the multifaceted pathology of COVID-19, a combinatorial formulation may provide an effective treatment. BEN815, a natural nutraceutical composed of extracts from guava leaves (Psidium guajava), green tea leaves (Camellia sinensis), and rose petals (Rosa hybrida), had previously shown to have a therapeutic effect on allergic rhinitis. We investigated whether BEN815 possesses anti-inflammatory, antiviral and antioxidant activities, since the combination of these effects could be useful for the treatment of COVID-19. Study design: We examined the anti-inflammatory effects of BEN815 and its principal active components quercetin and epigallocatechin gallate (EGCG) in lipopolysaccharide (LPS)-induced RAW264.7 cells and in an LPS-challenged mouse model of endotoxemia. We also assessed the antioxidant activity, and antiviral effect of BEN815, quercetin, and EGCG in SARS-CoV-2-infected Vero cells. Methods: The principal active ingredients in BEN815 were determined and quantified using HPLC. Changes in the levels of LPS-induced pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α were measured by ELISA. Changes in the expression levels of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) were analyzed using western blotting. Antioxidant assay was performed using DPPH and ABTS assay. SARS-CoV-2 replication was measured by immunofluorescence staining. Results: BEN815 significantly suppressed the induction of IL-6 and TNF-α as well as COX-2 and iNOS in LPS-induced RAW264.7 cells. In addition, BEN815 protected against LPS-challenged endotoxic shock in mice. Two major constituents of BEN815, quercetin and EGCG, reduced the induction of IL-6 and TNF-α as well as COX-2 and iNOS synthase in LPS-induced RAW264.7 cells. BEN815, quercetin, and EGCG were also found to have antioxidant effects. Importantly, BEN815 and EGCG could inhibit SARS-CoV-2 replications in Vero cells. Conclusion: BEN815 is an anti-inflammatory, antiviral, and antioxidant natural agent that can be used to prevent and improve inflammation-related diseases, COVID-19.

5.
J Transl Autoimmun ; 4: 100083, 2021.
Article in English | MEDLINE | ID: covidwho-1009707

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with considerable morbidity and mortality. The number of confirmed cases of infection with SARS-CoV-2, the virus causing COVID-19 continues to escalate with over 70 million confirmed cases and over 1.6 million confirmed deaths. Severe-to-critical COVID-19 is associated with a dysregulated host immune response to the virus, which is thought to lead to pathogenic immune dysregulation and end-organ damage. Presently few effective treatment options are available to treat COVID-19. Leronlimab is a humanized IgG4, kappa monoclonal antibody that blocks C-C chemokine receptor type 5 (CCR5). It has been shown that in patients with severe COVID-19 treatment with leronlimab reduces elevated plasma IL-6 and chemokine ligand 5 (CCL5), and normalized CD4/CD8 ratios. We administered leronlimab to 4 critically ill COVID-19 patients in intensive care. All 4 of these patients improved clinically as measured by vasopressor support, and discontinuation of hemodialysis and mechanical ventilation. Following administration of leronlimab there was a statistically significant decrease in IL-6 observed in patient A (p=0.034) from day 0-7 and patient D (p=0.027) from day 0-14. This corresponds to restoration of the immune function as measured by CD4+/CD8+ T cell ratio. Although two of the patients went on to survive the other two subsequently died of surgical complications after an initial recovery from SARS-CoV-2 infection.

6.
Gene Rep ; 22: 101012, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1002539

ABSTRACT

Recently an outbreak that emerged in Wuhan, China in December 2019, spread to the whole world in a short time and killed >1,410,000 people. It was determined that a new type of beta coronavirus called severe acute respiratory disease coronavirus type 2 (SARS-CoV-2) was causative agent of this outbreak and the disease caused by the virus was named as coronavirus disease 19 (COVID19). Despite the information obtained from the viral genome structure, many aspects of the virus-host interactions during infection is still unknown. In this study we aimed to identify SARS-CoV-2 encoded microRNAs and their cellular targets. We applied a computational method to predict miRNAs encoded by SARS-CoV-2 along with their putative targets in humans. Targets of predicted miRNAs were clustered into groups based on their biological processes, molecular function, and cellular compartments using GO and PANTHER. By using KEGG pathway enrichment analysis top pathways were identified. Finally, we have constructed an integrative pathway network analysis with target genes. We identified 40 SARS-CoV-2 miRNAs and their regulated targets. Our analysis showed that targeted genes including NFKB1, NFKBIE, JAK1-2, STAT3-4, STAT5B, STAT6, SOCS1-6, IL2, IL8, IL10, IL17, TGFBR1-2, SMAD2-4, HDAC1-6 and JARID1A-C, JARID2 play important roles in NFKB, JAK/STAT and TGFB signaling pathways as well as cells' epigenetic regulation pathways. Our results may help to understand virus-host interaction and the role of viral miRNAs during SARS-CoV-2 infection. As there is no current drug and effective treatment available for COVID19, it may also help to develop new treatment strategies.

SELECTION OF CITATIONS
SEARCH DETAIL