Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Journal of Psychosomatic Research ; Conference: 10th annual scientific conference of the European Association of Psychosomatic Medicine (EAPM). Wroclaw Poland. 169 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20236441

ABSTRACT

Background: Functional Somatic Disorders (FSDs) are characterized by persistent physical symptoms that cannot be explained by other somatic or psychiatric conditions. Multiple Chemical Sensitivity (MCS) is a non-allergic FSD characterized by odour intolerance and various somatic symptoms being attributed to the influence of toxic environmental chemicals in low, usually harmless doses. The pathophysiology of FSDs are still not clear. Smell and taste complaints were also among the notable symptoms characterizing the covid epidemic and the latest evidence suggests overlaps between long COVID and FSDs. Method(s): The study includes advanced analysis of MRI-derived functional and structural connectomes acquired on a 3 T MR scanner. Furthermore, it includes questionnaires and paraclinical tests, e.g. the Sniffin' Stick olfactory test, Mini-Mental State Examination, and Sino-Nasal Outcome test 22. The pilot part of the project included 6 MCS patients who were compared with 6 matched healthy participants. Later follow-up included analysis of 8 multiorgan FSD and 4 post-COVID patients. Result(s): The MCS group showed important brain structural connectivity differences in 34 tracts. Notably, for MCS patients, the olfactory cortex (especially in the right hemisphere) showed decreased connectivity with regions in the emotional system. Conclusion(s): We plan to extend these findings with whole-brain modelling of the functional connectivity in the patient groups. Long-term this could be used as a 'fingerprint' which could help with diagnosis and treatment monitoring in FSDs as well as with new diagnoses such as long-COVID.Copyright © 2023

2.
Ind Crops Prod ; 191: 115944, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2105136

ABSTRACT

Due to the pandemics of COVID-19, herbal medicine has recently been explored for possible antiviral treatment and prevention via novel platform of microbial fuel cells. It was revealed that Coffea arabica leaves was very appropriate for anti-COVID-19 drug development. Antioxidant and anti-inflammatory tests exhibited the most promising activities for C. arabica ethanol extracts and drying approaches were implemented on the leaf samples prior to ethanol extraction. Ethanol extracts of C. arabica leaves were applied to bioenergy evaluation via DC-MFCs, clearly revealing that air-dried leaves (CA-A-EtOH) exhibited the highest bioenergy-stimulating capabilities (ca. 2.72 fold of power amplification to the blank). Furthermore, molecular docking analysis was implemented to decipher the potential of C. arabica leaves metabolites. Chlorogenic acid (-6.5 kcal/mol) owned the highest binding affinity with RdRp of SARS-CoV-2, showing a much lower average RMSF value than an apoprotein. This study suggested C. arabica leaves as an encouraging medicinal herb against SARS-CoV-2.

3.
Front Immunol ; 13: 865401, 2022.
Article in English | MEDLINE | ID: covidwho-1775686

ABSTRACT

Current COVID-19 vaccines need to take at least one month to complete inoculation and then become effective. Around 51% of the global population is still not fully vaccinated. Instantaneous protection is an unmet need among those who are not fully vaccinated. In addition, breakthrough infections caused by SARS-CoV-2 are widely reported. All these highlight the unmet needing for short-term instantaneous prophylaxis (STIP) in the communities where SARS-CoV-2 is circulating. Previously, we reported nanobodies isolated from an alpaca immunized with the spike protein, exhibiting ultrahigh potency against SARS-CoV-2 and its variants. Herein, we found that Nb22, among our previously reported nanobodies, exhibited ultrapotent neutralization against Delta variant with an IC50 value of 0.41 ng/ml (5.13 pM). Furthermore, the crystal structural analysis revealed that the binding of Nb22 to WH01 and Delta RBDs both effectively blocked the binding of RBD to hACE2. Additionally, intranasal Nb22 exhibited protection against SARS-CoV-2 Delta variant in the post-exposure prophylaxis (PEP) and pre-exposure prophylaxis (PrEP). Of note, intranasal Nb22 also demonstrated high efficacy against SARS-CoV-2 Delta variant in STIP for seven days administered by single dose and exhibited long-lasting retention in the respiratory system for at least one month administered by four doses, providing a strategy of instantaneous short-term prophylaxis against SARS-CoV-2. Thus, ultrahigh potency, long-lasting retention in the respiratory system and stability at room-temperature make the intranasal or inhaled Nb22 to be a potential therapeutic or STIP agent against SARS-CoV-2.


Subject(s)
COVID-19 , Single-Domain Antibodies , Animals , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , SARS-CoV-2 , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL