Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Journal of Population Therapeutics and Clinical Pharmacology ; 30(3):E505-E514, 2023.
Article in English | Web of Science | ID: covidwho-2308814

ABSTRACT

The SARS-CoV-2 virus causes a contagious disease known as Coronavirus Disease 2019 (COVID-19). It began spreading globally in 2019 and is still producing pandemics today. Different COVID-19 vaccinations offer protection against this illness. Pfizer-BioNTech and Sinopharm were the two vaccine manufacturers with the highest usage in Iraq. Both vaccines use a different method to activate the immune system. This study seeks to compare the IL-22, IL-37, and IL-38 levels in those who received either the Sinopharm or the Pfizer-BioNTech COVID-19 vaccination. IL-22, IL-37, IL-38 levels have been shown to be upregulated in COVID-19 patients. In this study, IL-22, IL-37, and IL -38 levels were tested in 80 healthy controls and 100 COVID-19 patients 14-21 days after recovery. Additionally, people who received the Sinopharm or Pfizer-BioNTech vaccine (50 each) were monitored 21 days after the first dosage and 21 days after the second dose. In comparison to controls, serum levels were noticeably higher in recovered patients. Except for the first dosage of Pfizer BioNTech, the first and second doses of Sinopharm and Pfizer BioNTech were linked to considerably higher levels of IL-22, IL-37, and IL-38 compared to controls or recovered patients. where IL-22, IL -37, and IL-38 levels did not show significant differences compared to recovered patients. In conclusion, lower IL-37 and IL-38 molecule levels were linked to recovery from COVID-19, although these levels remained considerably greater in recovered patients compared to uninfected controls. Vaccination with Sinopharm or Pfizer-BioNTech confirmed the up-regulating effects of SARS-CoV-2 on IL-22, IL-37, and IL-38 levels.

2.
Journal of Population Therapeutics and Clinical Pharmacology ; 30(3):e505-e514, 2023.
Article in English | EMBASE | ID: covidwho-2261976

ABSTRACT

The SARS-CoV-2 virus causes a contagious disease known as Coronavirus Disease 2019 (COVID-19). It began spreading globally in 2019 and is still producing pandemics today. Different COVID-19 vaccinations offer protection against this illness. Pfizer-BioNTech and Sinopharm were the two vaccine manufacturers with the highest usage in Iraq. Both vaccines use a different method to activate the immune system. This study seeks to compare the IL-22, IL-37, and IL-38 levels in those who received either the Sinopharm or the Pfizer-BioNTech COVID-19 vaccination. IL-22, IL-37, IL-38 levels have been shown to be upregulated in COVID-19 patients. In this study, IL-22, IL-37, and IL-38 levels were tested in 80 healthy controls and 100 COVID-19 patients 14-21 days after recovery. Additionally, people who received the Sinopharm or Pfizer-BioNTech vaccine (50 each) were monitored 21 days after the first dosage and 21 days after the second dose. In comparison to controls, serum levels were noticeably higher in recovered patients. Except for the first dosage of Pfizer BioNTech, the first and second doses of Sinopharm and Pfizer BioNTech were linked to considerably higher levels of IL-22, IL-37, and IL-38 compared to controls or recovered patients. where IL-22, IL-37, and IL-38 levels did not show significant differences compared to recovered patients. In conclusion, lower IL-37 and IL-38 molecule levels were linked to recovery from COVID-19, although these levels remained considerably greater in recovered patients compared to uninfected controls. Vaccination with Sinopharm or Pfizer-BioNTech confirmed the up-regulating effects of SARS-CoV-2 on IL-22, IL-37, and IL-38 levels.Copyright © 2023, Codon Publications. All rights reserved.

3.
J Allergy Clin Immunol Pract ; 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2234577

ABSTRACT

BACKGROUND: The contemporaneous presence of immune defects and heart diseases in patients with 22q11.2 deletion syndrome (22q11.3DS) might represent risk factors for severe coronavirus 2019 disease (COVID-19). OBJECTIVE: To analyze severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outcome in 22q11.2DS patients and immunogenicity of different doses of mRNA SARS-CoV-2 vaccine. METHODS: Longitudinal observational study on SARS-CoV-2 outcome in 60 adults with 22q11.2DS (March 2020-June 2022). Anti-Spike, and anti-receptor binding domain (RBD) antibody responses, generation of Spike-specific memory B cells (MBCs) and Spike-specific T cells at different time points before and after the mRNA BNT162b2 vaccination were evaluated in 16 22q11.2DS patients. RESULTS: We recorded a 95% rate of vaccination, with almost all patients being immunized with the booster dose. Twenty-one patients had SARS-CoV-2 infection. Three patients were infected before vaccine availability, 6 after receiving 2 doses of vaccine, and 12 after one booster dose. The SARS-CoV-2- infection had a mild course, except in one unvaccinated patient with several comorbidities who died from acute respiratory distress syndrome (fatality rate 5%). Infected patients had more frequently moderate/severe intellectual disability, lymphopenia, and lower CD4+ count. Despite major congenital heart diseases, COVID-19 did not impact cardiological conditions. The BNT162b2 vaccine induced S1-immunoglobulin G (IgG) responses, low serum S1-IgA, and slightly impaired specific MBCs response. Specific T-cell responses observed were related to lymphocytes and CD4+ T cell counts. CONCLUSIONS: The SARS-CoV-2 infection had a mild course in most patients with 22q11.2DS, even in patients with major cardiovascular diseases. Immunization induced Spike-specific IgG responses and generated specific MBCs and memory T cells. The weaker memory responses in patients with lymphopenia suggested the need for additional doses.

4.
Euro Surveill ; 27(15)2022 04.
Article in English | MEDLINE | ID: covidwho-1793105

ABSTRACT

We estimated interim influenza A vaccine effectiveness (VE) following a late sharp rise in cases during an influenza A(H3N2)-dominated 2021/22 season, after lifting COVID-19 restrictions. In children aged 2-6 years offered a live attenuated influenza vaccine, adjusted VE was 62.7% (95% CI: 10.9-84.4) in hospitalised and 64.2% (95% CI: 50.5-74.1) in non-hospitalised children. In non-hospitalised patients aged 7-44 years, VE was 24.8% (95% CI: 12.8-35.2); VE was non-significant in remaining age groups and hospital/non-hospital settings.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Case-Control Studies , Child , Denmark/epidemiology , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza B virus , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Vaccination , Vaccine Efficacy
5.
Journal of Allergy and Clinical Immunology ; 149(3):874-878, 2022.
Article in English | EMBASE | ID: covidwho-1720145
6.
Blood ; 138:1757, 2021.
Article in English | EMBASE | ID: covidwho-1582174

ABSTRACT

Background: The two FDA approved mRNA-based SARS-CoV2 vaccines have shown >90% efficacy at preventing COVID and eliciting protective immunity in nearly all healthy individuals. However, the extent of vaccine induced antibody and T cell immunity in immunocompromised patients is not well known. Our study objective is to determine if patients with hematologic malignancies treated with B-cell targeting chimeric antigen receptor (CAR) T cell therapies can mount antibody and T cell immune responses to SARS-CoV2 vaccines. A prospective single-center study to evaluate the SARS-CoV2 immune responses in immunocompromised individuals (COVAX Study) was initiated at University of Pennsylvania following the IRB guidelines. The study enrolled 8 healthy adults,12 patients are in remission after treatment (average of 40.6 months) with CART cells targeting either CD19 or CD19+CD22 and received both doses of SARS-CoV2 vaccine. Methods and Results: Serology to SARS-CoV2 spike-receptor binding domain (RBD) IgG, RBD-IgA, RBD-IgM and spike-specific T cell responses were measured prior to vaccination and serially up to 28 days after booster vaccination. RBD-IgG and RBD-IgA were detected in 8/8 and 7/8 healthy subjects compared to 5/12 and 2/12 CART patients, respectively (Figure A). In the CART cohort, several patients who demonstrated an induction of RBD-IgG (57.2/uL +/- 20.2) compared to those who were RBD-IgG-negative (9/uL +/- 10.1, ANOVA with multiple comparisons test p=0.017) have higher level of circulating B cells. No association was found with time since CART infusion, age, disease type, or vaccine manufacturer. All 8 healthy subjects demonstrated induction of SARS-Cov2 spike-specific CD4 + T cell immunity compared to 7 out of 11 CART patients (Figure B). RBD-IgG responses were not correlated with CD4 + T cell activation (Pearson correlation, R=0.21, p=0.53). Indeed, 3 CART patients demonstrated robust CD4 + T cell activation despite absence of antibody induction. Overall, 8/12 CART patients demonstrated induction of either or both humoral and T cell immune responses. Conclusions: We show that immune responses to SARS-CoV2 mRNA vaccines are induced in majority of patients who have been treated with CART therapies targeting B-cell lineage antigens. Induction of vaccine-specific antibody was strongly associated with the level of circulating B cells. However, in CART cohort patients despite severe humoral immune deficiency, strong CD4 + T cell responses were observed suggestive of a sufficient protective immunity. [Formula presented] Disclosures: Frey: Novartis: Research Funding;Sana Biotechnology: Consultancy;Kite Pharma: Consultancy;Syndax Pharmaceuticals: Consultancy. Garfall: Amgen: Honoraria;CRISPR Therapeutics: Research Funding;GlaxoSmithKline: Honoraria;Janssen: Honoraria, Research Funding;Novartis: Research Funding;Tmunity: Research Funding. Porter: American Society for Transplantation and Cellular Therapy: Honoraria;Genentech: Current equity holder in publicly-traded company, Ended employment in the past 24 months;ASH: Membership on an entity's Board of Directors or advisory committees;DeCart: Membership on an entity's Board of Directors or advisory committees;Incyte: Membership on an entity's Board of Directors or advisory committees;Janssen: Membership on an entity's Board of Directors or advisory committees;Kite/Gilead: Membership on an entity's Board of Directors or advisory committees;National Marrow Donor Program: Membership on an entity's Board of Directors or advisory committees;Novartis: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding;Tmunity: Patents & Royalties;Wiley and Sons Publishing: Honoraria. June: AC Immune, DeCART, BluesphereBio, Carisma, Cellares, Celldex, Cabaletta, Poseida, Verismo, Ziopharm: Consultancy;Tmunity, DeCART, BluesphereBio, Carisma, Cellares, Celldex, Cabaletta, Poseida, Verismo, Ziopharm: Current equity holder in publicly-traded company;Novartis: Patents & Royalties.

SELECTION OF CITATIONS
SEARCH DETAIL