Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 8.204
Filter
2.
Postgrad Med J ; 96(1137): 403-407, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-20245306

ABSTRACT

This article reviews the correlation between ACE2 and COVID-19 and the resulting acute respiratory distress syndrome (ARDS). ACE2 is a crucial component of the renin-angiotensin system (RAS). The classical ACE-angiotensin Ⅱ (Ang II)-angiotensin type 1 receptor (AT1R) axis and the ACE2-Ang(1-7)-Mas counter-regulatory axis play an essential role in RAS system. ACE2 antagonises the activation of the classical RAS ACE-Ang II-AT1R axis and protects against lung injury. Similar to severe acute respiratory syndrome-related coronavirus, 2019 novel coronavirus (2019-nCoV) also uses ACE2 for cell entry. ARDS is a clinical high-mortality disease which is probably due to the excessive activation of RAS caused by 2019-nCoV infection, and ACE2 has a protective effect on ARDS caused by COVID-19. Because of these protective effects of ACE2 on ARDS, the development of drugs enhancing ACE2 activity may become one of the most promising approaches for the treatment of COVID-19 in the near future. In the meantime, however, the use of RAS blockers such as ACE inhibitors and angiotensin II receptor blockers that inhibit the damaging (ACE-Ang II) arm of the RAS cascade in the lung may also be promising. Trial registration number: NCT04287686.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/physiopathology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/physiopathology , Receptors, Virus/metabolism , Respiratory Distress Syndrome/physiopathology , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme 2 , Betacoronavirus/drug effects , COVID-19 , Coronavirus Infections/drug therapy , Humans , Pandemics , Pneumonia, Viral/drug therapy , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/virology , SARS-CoV-2
4.
J Hosp Infect ; 137: 44-53, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20232613

ABSTRACT

OBJECTIVES: In Tuscany, Italy, New Delhi metallo-beta-lactamase-producing carbapenem-resistant Enterobacterales (NDM-CRE) in hospitalized patients has increasingly been observed since 2018, leading in 2019 to the implementation of enhanced control measures successfully reducing transmission. We describe the NDM-CRE epidemiology during the COVID-19 pandemic in Tuscany. METHODS: Data on NDM-CRE patients hospitalized in five Tuscan hospitals were collected from January 2019 to December 2021. Weekly rates of NDM-CRE cases on hospital days in medical and critical-care wards were calculated. In March-December 2020, NDM-CRE rates were stratified by COVID-19 diagnosis. Multi-variate regression analysis was performed to assess outcomes' differences among two periods analysed and between COVID-19 populations. RESULTS: Since March 2020, an increase in NDM-CRE cases was observed, associated with COVID-19 admissions. COVID-19 patients differed significantly from non-COVID-19 ones by several variables, including patient features (age, Charlson index) and clinical history and outcomes (NDM-CRE infection/colonization, intensive care unit stay, length of stay, mortality). During the pandemic, we observed a higher rate of NDM-CRE cases per hospital day in both non-COVID-19 patients (273/100,000) and COVID-19 patients (370/100,00) when compared with pre-pandemic period cases (187/100,00). CONCLUSIONS: Our data suggest a resurgence in NDM-CRE spread among hospitalized patients in Tuscany during the COVID-19 pandemic, as well as a change in patients' case-mix. The observed increase in hospital transmission of NDM-CRE could be related to changes in infection prevention and control procedures, aimed mainly at COVID-19 management, leading to new challenges in hospital preparedness and crisis management planning.


Subject(s)
COVID-19 , Gammaproteobacteria , Humans , Pandemics , COVID-19 Testing , COVID-19/epidemiology , beta-Lactamases , Hospitals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests
5.
PLoS One ; 18(6): e0286211, 2023.
Article in English | MEDLINE | ID: covidwho-20232587

ABSTRACT

BACKGROUND AND PURPOSE: Cytokine storm invoked during acute and chronic lung injury promotes alveolar damage and remodeling. The current study shows that degraded elastin-targeted nanoparticles releasing doxycycline (Doxy NPs) are potent in mitigating cytokines storm, migration of immune cells in the lungs, and inhibiting inflammasome pathways in the LPS mouse model. EXPERIMENTAL APPROACH: Cytokine storm and lung injury were induced using LPS and elastase in C57BL/6 mice (rodent model for emphysema). The mice were then treated with I.V. Doxy NPs, blank NPs, or Doxy a day before LPS administration. Cytokine levels, immune cell population, and MMP activity were analyzed in broncheo-alveolar lavage fluid (BALF) 4 hours after LPS administration. Additionally, gene expression of IL-6, IL-1beta, MCP-1, NLRP3, Caspase 1 and MMPs were investigated in alveolar cells on day 3 after LPS administration. KEY RESULTS: Doxycycline NPs but not Doxycycline significantly decreased IL-6, TNF-α, IL-23 and were significantly more effective in decreasing the percentage of immune cells in the BALF. This is the first in-vivo study to demonstrate that Doxycycline can effectively inhibit inflammasome pathways in the lungs. CONCLUSION AND IMPLICATIONS: IV administration of elastin antibody conjugated Doxycycline-loaded albumin NPs can effectively modulate the local immune environment in the lungs, which is not achieved by IV Doxycycline even at 100-fold higher dose. This novel method of drug delivery can effectively lead to the repurposing of traditional Doxycycline as a potential adjunct treatment for managing the cytokine storm in the lungs in COPD and viral infections.


Subject(s)
Lung Injury , Nanoparticles , Pneumonia , Mice , Animals , Lipopolysaccharides/pharmacology , Inflammasomes/metabolism , Interleukin-6/metabolism , Cytokine Release Syndrome , Elastin/metabolism , Mice, Inbred C57BL , Pneumonia/metabolism , Lung/metabolism , Cytokines/metabolism , Lung Injury/metabolism
6.
Neurotoxicology ; 97: 101-108, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20232294

ABSTRACT

Anxiety-related disorders are among the most important risks for global health, especially in recent years due to the COVID-19 pandemic. Benzodiazepines like diazepam are generally used to treat anxiety disorders, but the overall outcome is not always satisfactory. This is why psychiatrists encourage patients with anxiety to change their lifestyle habits to decrease the risk of anxiety recurrence. However, the effect of diazepam and exercise in combination is unknown. This study aimed to investigate the effect of diazepam alone or in combination with swimming exercise on lipopolysaccharide (LPS)-induced anxiety-like behavior and oxidative stress in the hippocampus and prefrontal cortex of mice. Mice were exposed to diazepam and swimming exercise alone or in combination with each other and then received LPS. We assessed anxiety-like behavior using open field and light-dark box and measured oxidative markers including glutathione (GSH), malondialdehyde (MDA), and glutathione disulfide (GSSG) in the hippocampus and prefrontal cortex. The findings showed that LPS increased anxiety-related symptoms and oxidative stress by decreasing GSH and increasing MDA and GSSG levels in the prefrontal cortex but not in the hippocampus. Although diazepam alone did not reduce anxiety-like behavior and oxidative stress, it in combination with exercise significantly decreased anxiety-like behavior and oxidative stress in the prefrontal cortex of LPS-treated mice. This drug and exercise combination also displayed a more effective effect in comparison with exercise alone. Overall, this study suggests that diazepam in combination with swimming exercise has higher efficacy on anxiety-like behavior and oxidative stress than when they are used alone.


Subject(s)
COVID-19 , Lipopolysaccharides , Mice , Animals , Humans , Lipopolysaccharides/toxicity , Glutathione Disulfide , Diazepam/pharmacology , Pandemics , Oxidative Stress , Anxiety/chemically induced , Anxiety/prevention & control , Prefrontal Cortex , Glutathione/metabolism , Hippocampus
7.
J Chem Inf Model ; 63(11): 3601-3613, 2023 06 12.
Article in English | MEDLINE | ID: covidwho-20232259

ABSTRACT

The SARS-CoV-2 main protease (Mpro) is a crucial enzyme for viral replication and has been considered an attractive drug target for the treatment of COVID-19. In this study, virtual screening techniques and in vitro assays were combined to identify novel Mpro inhibitors starting from around 8000 FDA-approved drugs. The docking analysis highlighted 17 promising best hits, biologically characterized in terms of their Mpro inhibitory activity. Among them, 7 cephalosporins and the oral anticoagulant betrixaban were able to block the enzyme activity in the micromolar range with no cytotoxic effect at the highest concentration tested. After the evaluation of the degree of conservation of Mpro residues involved in the binding with the studied ligands, the ligands' activity on SARS-CoV-2 replication was assessed. The ability of betrixaban to affect SARS-CoV-2 replication associated to its antithrombotic effect could pave the way for its possible use in the treatment of hospitalized COVID-19 patients.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Drug Repositioning , Ligands , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation
8.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: covidwho-20238922

ABSTRACT

Despite the fact that coronavirus disease 2019 (COVID-19) treatment and management are now considerably regulated, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still one of the leading causes of death in 2022. The availability of COVID-19 vaccines, FDA-approved antivirals, and monoclonal antibodies in low-income countries still poses an issue to be addressed. Natural products, particularly traditional Chinese medicines (TCMs) and medicinal plant extracts (or their active component), have challenged the dominance of drug repurposing and synthetic compound libraries in COVID-19 therapeutics. Their abundant resources and excellent antiviral performance make natural products a relatively cheap and readily available alternative for COVID-19 therapeutics. Here, we deliberately review the anti-SARS-CoV-2 mechanisms of the natural products, their potency (pharmacological profiles), and application strategies for COVID-19 intervention. In light of their advantages, this review is intended to acknowledge the potential of natural products as COVID-19 therapeutic candidates.


Subject(s)
Biological Products , COVID-19 , Humans , SARS-CoV-2 , COVID-19 Vaccines , Biological Products/pharmacology , Biological Products/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
9.
Viruses ; 15(5)2023 05 10.
Article in English | MEDLINE | ID: covidwho-20238839

ABSTRACT

INTRODUCTION: There is negligible evidence on the efficacy of ivermectin for treating COVID-19 pneumonia. This study aimed to assess the efficacy of ivermectin for pre-emptively treating Strongyloides stercoralis hyperinfection syndrome in order to reduce mortality and the need for respiratory support in patients hospitalized for COVID-19. METHODS: This single-center, observational, retrospective study included patients admitted with COVID-19 pneumonia at Hospital Vega Baja from 23 February 2020 to 14 March 2021. Because strongyloidiasis is endemic to our area, medical criteria support empiric administration of a single, 200 µg/kg dose of ivermectin to prevent Strongyloides hyperinfection syndrome. The outcome was a composite of all-cause in-hospital mortality and the need for respiratory support. RESULTS: Of 1167 patients in the cohort, 96 received ivermectin. After propensity score matching, we included 192 patients. The composite outcome of in-hospital mortality or need for respiratory support occurred in 41.7% of the control group (40/96) and 34.4% (33/96) of the ivermectin group. Ivermectin was not associated with the outcome of interest (adjusted odds ratio [aOR] 0.77, 95% confidence interval [CI] 0.35, 1.69; p = 0.52). The factors independently associated with this endpoint were oxygen saturation (aOR 0.78, 95% CI 0.68, 0.89, p < 0.001) and C-reactive protein at admission (aOR: 1.09, 95% CI 1.03, 1.16, p < 0.001). CONCLUSIONS: In hospitalized patients with COVID-19 pneumonia, ivermectin at a single dose for pre-emptively treating Strongyloides stercoralis is not effective in reducing mortality or the need for respiratory support measures.


Subject(s)
COVID-19 , Strongyloides stercoralis , Animals , Humans , Ivermectin/therapeutic use , Ivermectin/pharmacology , Retrospective Studies , Hospital Mortality , Propensity Score
11.
Molecules ; 28(11)2023 May 30.
Article in English | MEDLINE | ID: covidwho-20238682

ABSTRACT

Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) induces a severe cytokine storm that may cause acute lung injury/acute respiratory distress syndrome (ALI/ARDS) with high clinical morbidity and mortality in infected individuals. Cepharanthine (CEP) is a bisbenzylisoquinoline alkaloid isolated and extracted from Stephania cepharantha Hayata. It exhibits various pharmacological effects, including antioxidant, anti-inflammatory, immunomodulatory, anti-tumor, and antiviral activities. The low oral bioavailability of CEP can be attributed to its poor water solubility. In this study, we utilized the freeze-drying method to prepare dry powder inhalers (DPI) for the treatment of acute lung injury (ALI) in rats via pulmonary administration. According to the powder properties study, the aerodynamic median diameter (Da) of the DPIs was 3.2 µm, and the in vitro lung deposition rate was 30.26; thus, meeting the Chinese Pharmacopoeia standard for pulmonary inhalation administration. We established an ALI rat model by intratracheal injection of hydrochloric acid (1.2 mL/kg, pH = 1.25). At 1 h after the model's establishment, CEP dry powder inhalers (CEP DPIs) (30 mg/kg) were sprayed into the lungs of rats with ALI via the trachea. Compared with the model group, the treatment group exhibited a reduced pulmonary edema and hemorrhage, and significantly reduced content of inflammatory factors (TNF-α, IL-6 and total protein) in their lungs (p < 0.01), indicating that the main mechanism of CEP underlying the treatment of ALI is anti-inflammation. Overall, the dry powder inhaler can deliver the drug directly to the site of the disease, increasing the intrapulmonary utilization of CEP and improving its efficacy, making it a promising inhalable formulation for the treatment of ALI.


Subject(s)
Acute Lung Injury , Benzylisoquinolines , COVID-19 , Rats , Animals , Administration, Inhalation , Dry Powder Inhalers , COVID-19/metabolism , SARS-CoV-2 , Respiratory Aerosols and Droplets , Lung/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Benzylisoquinolines/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/analysis , Particle Size , Powders/analysis
13.
ACS Biomater Sci Eng ; 9(7): 4178-4186, 2023 07 10.
Article in English | MEDLINE | ID: covidwho-20238528

ABSTRACT

The SARS-CoV-2 global pandemic has reinvigorated interest in the creation and widespread deployment of durable, cost-effective, and environmentally benign antipathogenic coatings for high-touch public surfaces. While the contact-kill capability and mechanism of metallic copper and its alloys are well established, the biocidal activity of the refractory oxide forms remains poorly understood. In this study, commercial cuprous oxide (Cu2O, cuprite) powder was rapidly nanostructured using high-energy cryomechanical processing. Coatings made from these processed powders demonstrated a passive "contact-kill" response to Escherichia coli (E. coli) bacteria that was 4× (400%) faster than coatings made from unprocessed powder. No viable bacteria (>99.999% (5-log10) reduction) were detected in bioassays performed after two hours of exposure of E. coli to coatings of processed cuprous oxide, while a greater than 99% bacterial reduction was achieved within 30 min of exposure. Further, these coatings were hydrophobic and no external energy input was required to activate their contact-kill capability. The upregulated antibacterial response of the processed powders is positively correlated with extensive induced crystallographic disorder and microstrain in the Cu2O lattice accompanied by color changes that are consistent with an increased semiconducting bandgap energy. It is deduced that cryomilling creates well-crystallized nanoscale regions enmeshed within the highly lattice-defective particle matrix. Increasing the relative proportion of lattice-defective cuprous oxide exposed to the environment at the coating surface is anticipated to further enhance the antipathogenic capability of this abundant, inexpensive, robust, and easily handled material for wider application in contact-kill surfaces.


Subject(s)
COVID-19 , Copper , Humans , Copper/pharmacology , Copper/chemistry , Powders/pharmacology , Escherichia coli , SARS-CoV-2 , Bacteria
14.
Virulence ; 14(1): 2218077, 2023 12.
Article in English | MEDLINE | ID: covidwho-20238214

ABSTRACT

Neutrophil dysregulation is well established in COVID-19. However, factors contributing to neutrophil activation in COVID-19 are not clear. We assessed if N-formyl methionine (fMet) contributes to neutrophil activation in COVID-19. Elevated levels of calprotectin, neutrophil extracellular traps (NETs) and fMet were observed in COVID-19 patients (n = 68), particularly in critically ill patients, as compared to HC (n = 19, p < 0.0001). Of note, the levels of NETs were higher in ICU patients with COVID-19 than in ICU patients without COVID-19 (p < 0.05), suggesting a prominent contribution of NETs in COVID-19. Additionally, plasma from COVID-19 patients with mild and moderate/severe symptoms induced in vitro neutrophil activation through fMet/FPR1 (formyl peptide receptor-1) dependent mechanisms (p < 0.0001). fMet levels correlated with calprotectin levels validating fMet-mediated neutrophil activation in COVID-19 patients (r = 0.60, p = 0.0007). Our data indicate that fMet is an important factor contributing to neutrophil activation in COVID-19 disease and may represent a potential target for therapeutic intervention.


Subject(s)
COVID-19 , Methionine , Humans , Neutrophil Activation , Peptides , N-Formylmethionine/pharmacology , Racemethionine , Neutrophils , Leukocyte L1 Antigen Complex
15.
Molecules ; 28(11)2023 May 24.
Article in English | MEDLINE | ID: covidwho-20238192

ABSTRACT

Essential oils (Eos) have demonstrated antiviral activity, but their toxicity can hinder their use as therapeutic agents. Recently, some essential oil components have been used within safe levels of acceptable daily intake limits without causing toxicity. The "ImmunoDefender," a novel antiviral compound made from a well-known mixture of essential oils, is considered highly effective in treating SARS-CoV-2 infections. The components and doses were chosen based on existing information about their structure and toxicity. Blocking the main protease (Mpro) of SARS-CoV-2 with high affinity and capacity is critical for inhibiting the virus's pathogenesis and transmission. In silico studies were conducted to examine the molecular interactions between the main essential oil components in "ImmunoDefender" and SARS-CoV-2 Mpro. The screening results showed that six key components of ImmunoDefender formed stable complexes with Mpro via its active catalytic site with binding energies ranging from -8.75 to -10.30 kcal/mol, respectively for Cinnamtannin B1, Cinnamtannin B2, Pavetannin C1, Syzyginin B, Procyanidin C1, and Tenuifolin. Furthermore, three essential oil bioactive inhibitors, Cinnamtannin B1, Cinnamtannin B2, and Pavetannin C, had significant ability to bind to the allosteric site of the main protease with binding energies of -11.12, -10.74, and -10.79 kcal/mol; these results suggest that these essential oil bioactive compounds may play a role in preventing the attachment of the translated polyprotein to Mpro, inhibiting the virus's pathogenesis and transmission. These components also had drug-like characteristics similar to approved and effective drugs, suggesting that further pre-clinical and clinical studies are needed to confirm the generated in silico outcomes.


Subject(s)
COVID-19 , Oils, Volatile , Humans , SARS-CoV-2 , Antiviral Agents/chemistry , Oils, Volatile/pharmacology , Molecular Docking Simulation , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/metabolism , Peptide Hydrolases/metabolism , Molecular Dynamics Simulation
16.
J Med Virol ; 95(6): e28863, 2023 06.
Article in English | MEDLINE | ID: covidwho-20238042

ABSTRACT

The ongoing COVID-19 has not only caused millions of deaths worldwide, but it has also led to economic recession and the collapse of public health systems. The vaccines and antivirals developed in response to the pandemic have improved the situation markedly; however, the pandemic is still not under control with recurring surges. Thus, it is still necessary to develop therapeutic agents. In our previous studies, we designed and synthesized a series of novel 2-anilinoquinazolin-4(3H)-one derivatives, and demonstrated inhibitory activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and MERS-CoV in vitro. We then conducted in vivo studies using modified compounds that are suitable for oral administration. These compounds demonstrated no toxicity in rats and inhibited viral entry. Here, we investigated the in vivo efficacy of these drug candidates against SARS-CoV-2. Three candidate drugs, 7-chloro-2-((3,5-dichlorophenyl)amino)quinazolin-4(3H)-one (1), N-(7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-N-(3,5-dichlorophenyl)acetamide (2), and N-(7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-N-(3,5-difluorophenyl)acetamide (3) were administered orally to hACE2 transgenic mice at a dose of 100 mg/kg. All three drugs improved survival rate and reduced the viral load in the lungs. These results show that the derivatives possess in vivo antiviral efficacy similar to that of molnupiravir, which is currently being used to treat COVID-19. Overall, our data suggest that 2-anilinoquinazolin-4(3H)-one derivatives are promising as potential oral antiviral drug candidates against SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Rats , Acetamides , Angiotensin-Converting Enzyme 2/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/therapy , Disease Models, Animal , Mice, Transgenic , Quinazolines/pharmacology , Quinazolines/therapeutic use , SARS-CoV-2/genetics
17.
Molecules ; 28(11)2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-20238032

ABSTRACT

Stilbene and its derivatives belong to the group of biologically active compounds. Some derivatives occur naturally in various plant species, while others are obtained by synthesis. Resveratrol is one of the best-known stilbene derivatives. Many stilbene derivatives exhibit antimicrobial, antifungal or anticancer properties. A thorough understanding of the properties of this group of biologically active compounds, and the development of their analytics from various matrices, will allow for a wider range of applications. This information is particularly important in the era of increasing incidence of various diseases hitherto unknown, including COVID-19, which is still present in our population. The purpose of this study was to summarize information on the qualitative and quantitative analysis of stilbene derivatives, their biological activity, potential applications as preservatives, antiseptics and disinfectants, and stability analysis in various matrices. Optimal conditions for the analysis of the stilbene derivatives in question were developed using the isotachophoresis technique.


Subject(s)
COVID-19 , Stilbenes , Humans , Stilbenes/pharmacology , Resveratrol/pharmacology , Antifungal Agents , Preservatives, Pharmaceutical
18.
Front Cell Infect Microbiol ; 13: 1181402, 2023.
Article in English | MEDLINE | ID: covidwho-20237417

ABSTRACT

Background: Mycoplasma pneumoniae (MP) is a commonly occurring pathogen causing community-acquired pneumonia (CAP) in children. The global prevalence of macrolide-resistant MP (MRMP) infection, especially in Asian regions, is increasing rapidly. However, the prevalence of MRMP and its clinical significance during the COVID-19 pandemic is not clear. Methods: This study enrolled children with molecularly confirmed macrolide-susceptible MP (MSMP) and MRMP CAP from Beijing Children's Hospital Baoding Hospital, Capital Medical University between August 2021 and July 2022. The clinical characteristics, laboratory findings, chest imaging presentations, and strain genotypes were compared between patients with MSMP and MRMP CAP. Results: A total of 520 hospitalized children with MP-CAP were enrolled in the study, with a macrolide resistance rate of 92.7%. Patients with MRMP infection exhibited more severe clinical manifestations (such as dyspnea and pleural effusion) and had a longer hospital stay than the MSMP group. Furthermore, abnormal blood test results (including increased LDH and D-dimer) were more common in the MRMP group (P<0.05). Multilocus variable-number tandem-repeat analysis (MLVA) was performed on 304 samples based on four loci (Mpn13-16), and M3562 and M4572 were the major types, accounting for 74.0% and 16.8% of the strains, respectively. The macrolide resistance rate of M3562 strains was up to 95.1%. Conclusion: The prevalence of MRMP strains in hospitalized CAP patients was extremely high in the Baoding area, and patients infected with MRMP strains exhibited more severe clinical features and increased LDH and D-dimer. M3562 was the predominant resistant clone.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia, Mycoplasma , Child , Humans , Pneumonia, Mycoplasma/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Macrolides/pharmacology , Clinical Relevance , Pandemics , COVID-19/epidemiology , Drug Resistance, Bacterial/genetics , Mycoplasma pneumoniae/genetics , Community-Acquired Infections/epidemiology
19.
Biochemistry ; 62(13): 2055-2064, 2023 07 04.
Article in English | MEDLINE | ID: covidwho-20237409

ABSTRACT

SARS-CoV-2 continues to pose a threat to public health. Main protease (Mpro) is one of the most lucrative drug targets for developing specific antivirals against SARS-CoV-2 infection. By targeting Mpro, peptidomimetic nirmatrelvir is able to inhibit viral replication of SARS-CoV-2 and reduce the risk for progression to severe COVID-19. However, multiple mutations in the gene encoding Mpro of emerging SARS-CoV-2 variants raise a concern of drug resistance. In the present study, we expressed 16 previously reported SARS-CoV-2 Mpro mutants (G15S, T25I, T45I, S46F, S46P, D48N, M49I, L50F, L89F, K90R, P132H, N142S, V186F, R188K, T190I, and A191V). We evaluated the inhibition potency of nirmatrelvir against these Mpro mutants and solved the crystal structures of representative Mpro mutants of SARS-CoV-2 bound to nirmatrelvir. Enzymatic inhibition assays revealed that these Mpro variants remain susceptible to nirmatrelvir as the wildtype. Detailed analysis and structural comparison provided the inhibition mechanism of Mpro mutants by nirmatrelvir. These results informed the ongoing genomic surveillance of drug resistance of emerging SARS-CoV-2 variants to nirmatrelvir and facilitate the development of next-generation anticoronavirus drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Lactams , Leucine , Nitriles , Peptide Hydrolases , Protease Inhibitors/pharmacology
20.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: covidwho-20237382

ABSTRACT

The ongoing COVID-19 pandemic highlights the urgent need for effective antiviral agents and vaccines. Drug repositioning, which involves modifying existing drugs, offers a promising approach for expediting the development of novel therapeutics. In this study, we developed a new drug, MDB-MDB-601a-NM, by modifying the existing drug nafamostat (NM) with the incorporation of glycyrrhizic acid (GA). We assessed the pharmacokinetic profiles of MDB-601a-NM and nafamostat in Sprague-Dawley rats, revealing rapid clearance of nafamostat and sustained drug concentration of MDB-601a-NM after subcutaneous administration. Single-dose toxicity studies showed potential toxicity and persistent swelling at the injection site with high-dose administration of MDB-601a-NM. Furthermore, we evaluated the efficacy of MDB-601a-NM in protecting against SARS-CoV-2 infection using the K18 hACE-2 transgenic mouse model. Mice treated with 60 mg/kg and 100 mg/kg of MDB-601a-NM exhibited improved protectivity in terms of weight loss and survival rates compared to the nafamostat-treated group. Histopathological analysis revealed dose-dependent improvements in histopathological changes and enhanced inhibitory efficacy in MDB-601a-NM-treated groups. Notably, no viral replication was detected in the brain tissue when mice were treated with 60 mg/kg and 100 mg/kg of MDB-601a-NM. Our developed MDB-601a-NM, a modified Nafamostat with glycyrrhizic acid, shows improved protectivity against SARS-CoV-2 infection. Its sustained drug concentration after subcutaneous administration and dose-dependent improvements makes it a promising therapeutic option.


Subject(s)
COVID-19 , SARS-CoV-2 , Rats , Humans , Animals , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , Pandemics , Disease Models, Animal , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL