Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
Am J Clin Pathol ; 158(2): 167-172, 2022 Aug 04.
Article in English | MEDLINE | ID: covidwho-2032012

ABSTRACT

OBJECTIVES: Despite the clear benefits of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in mitigating the impact of the coronavirus disease 2019 pandemic, there are emerging reports of postvaccination myocarditis, the majority of which are diagnosed based on the clinical and radiologic findings without biopsy confirmation. We report a case of biopsy-confirmed lymphohistiocytic myocarditis after Moderna mRNA-1273 vaccination. METHODS: We describe a case of a previously healthy 45-year-old woman who had palpitations, exercise intolerance, and syncope 1 week after her first mRNA-1273 vaccine dose. Laboratory tests and cardiac imaging were compatible with myocarditis. Given her unusual clinical presentation, an endomyocardial biopsy was performed to exclude other potential etiologies. RESULTS: The endomyocardial biopsy specimen showed patchy endocardial and intramyocardial lymphohistiocytic infiltrates with scattered eosinophils and focal myocyte injury. CD3 and CD68 immunostains confirmed the lymphocytic and histiocytic nature of the infiltrate, respectively. A focal histiocytic collection suggestive of an ill-defined granuloma was present. The histologic and immunohistochemical findings of a lymphohistiocytic myocarditis were highly suggestive of a postvaccination hypersensitivity reaction. CONCLUSIONS: Myocarditis following SARS-CoV-2 vaccination is a rare adverse event. The findings of a lymphohistiocytic myocarditis with scattered eosinophils and a possible ill-defined granuloma are highly suggestive of a hypersensitivity reaction. The mechanism by which this inflammation occurs remains uncertain. Despite our findings, the benefits of SARS-CoV-2 vaccination far outweigh the risks.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Myocarditis , 2019-nCoV Vaccine mRNA-1273/adverse effects , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Female , Granuloma , Humans , Middle Aged , Myocarditis/diagnosis , Myocarditis/etiology , Myocarditis/pathology , SARS-CoV-2
2.
Nat Commun ; 13(1): 4710, 2022 Aug 11.
Article in English | MEDLINE | ID: covidwho-1991589

ABSTRACT

Comparative analyses of the immunogenicity and reactogenicity of homologous and heterologous SARS-CoV-2 vaccine-regimens will inform optimized vaccine strategies. Here we analyze the humoral and cellular immune response following heterologous and homologous vaccination strategies in a convenience cohort of 331 healthy individuals. All regimens induce immunity to the vaccine antigen. Immunity after vaccination with ChAdOx1-nCoV-19 followed by either BNT162b2 (n = 66) or mRNA-1273 (n = 101) is equivalent to or more pronounced than homologous mRNA-regimens (n = 43 BNT162b2, n = 59 mRNA-1273) or homologous ChAdOx1-nCoV-19 vaccination (n = 62). We note highest levels of spike-specific CD8 T-cells following both heterologous regimens. Among mRNA-containing combinations, spike-specific CD4 T-cell levels in regimens including mRNA-1273 are higher than respective combinations with BNT162b2. Polyfunctional T-cell levels are highest in regimens based on ChAdOx1-nCoV-19-priming. All five regimens are well tolerated with most pronounced reactogenicity upon ChAdOx1-nCoV-19-priming, and ChAdOx1-nCoV-19/mRNA-1273-boosting. In conclusion, we present comparative analyses of immunogenicity and reactogenicity for heterologous vector/mRNA-boosting and homologous mRNA-regimens.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Humans , RNA, Messenger , SARS-CoV-2/genetics , Vaccination/adverse effects
3.
Infect Dis Now ; 52(5): 280-285, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1991060

ABSTRACT

OBJECTIVES: The HEMVACO study evaluated the humoral response after mRNA anti-SARS-CoV-2 vaccination in an hematological cohort. METHODS: HEMVACO was a prospective, multicentric study registered in ClinicalTrials.gov, number NCT04852796. Patients received two or three doses of BNT162b2 vaccine or mRNA-1273 vaccine. The SARS-CoV-2 TrimericS IgG titers were measured 1, 3, 6 and 12 months after the second dose. RESULTS: Only 16 patients (11.6%) were naive of hematological treatment and 77 patients (55.8%) were on active treatment for hemopathy. Among the 138 analyzed patients, positive antibody titer at 1 month was obtained in 68.1% of patients with mean serology at 850±883 BAU/ml. Risk factors for vaccine failure were anti-CD20 therapy (OR=111[14.3-873]; P<0.001), hypogammaglobulinemia under 8g/L (OR=2.49[1.05-5.92]; P=0.032) and lymphopenia under 1.5G/L (OR=2.47[1.18-5.17]; P=0.015). Anti-CD20 therapy induced no anti-SARS-CoV-2 seroconversion (96%). Seventy-eight patients (56.5%) received a third dose and could reach the SARS-CoV-2 TrimericS IgG titer of high-risk patients (P=0.54). The median titer at 379 BAU/ml distinguished two groups of vaccine response (99±121 BAU/ml versus 1,109±678 BAU/ml). CONCLUSION: Vaccination should be performed before anti-CD20 therapy if the hemopathy treatment can be delayed. Administration of the third vaccine dose was interesting for patients with suboptimal response, defined by a 379 BAU/ml titer in our study.


Subject(s)
COVID-19 , Hematologic Diseases , Vaccines , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Prospective Studies , RNA, Messenger , SARS-CoV-2
4.
JAMA Netw Open ; 5(8): e2226236, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1990379

ABSTRACT

Importance: Kawasaki disease (KD) symptoms significantly overlap with multisystem inflammatory syndrome in children due to COVID-19. Patients with KD may be at risk for adverse outcomes from exposure to SARS-CoV-2 infection or vaccination. Objective: To describe the outcomes of patients with KD to SARS-CoV-2 infection or vaccination. Design, Setting, and Participants: This case series evaluated 2 cohorts using an existing KD database and reviewed individual electronic medical records for the period spanning January 1, 2020, through January 31, 2022, via electronic medical records that include Washington state immunization records. Vaccine cohort inclusion criteria consisted of being 21 years or younger at immunization and receiving 1 or more BNT162b2 (Pfizer-BioNTech) or messenger RNA (mRNA)-1273 (Moderna) vaccine doses. The COVID-19 cohort included patients 21 years or younger with positive polymerase chain reaction or nuclear capsid IgG findings for SARS-CoV-2. Participants included 826 patients from a preexisting KD database. One hundred fifty-three patients received at least 1 BNT162b2 or mRNA-1273 vaccine dose and were included in the mRNA vaccine cohort. Thirty-seven patients had positive test results for SARS-CoV-2 and were included in the COVID-19 cohort. Exposures: SARS-CoV-2 vaccination and/or infection. Main Outcomes and Measures: Adverse events after mRNA vaccination and/or COVID-19, including clinician visits, emergency department encounters, or hospitalizations. Results: Among the 153 patients included in the mRNA vaccination cohort (mean [SD] age, 13.0 [4.3] years; 94 male [61.4%]), the BNT162b2 vaccine was provided for 143 (93.5%), and the remaining 10 (6.5%) received mRNA-1273 or a combination of both. Among patients in the vaccine cohort, 129 (84.3%) were fully vaccinated or received a third-dose booster. No clinically severe adverse events occurred, and there were no reports of vaccine-related hospitalizations or outpatient visits. The COVID-19 cohort included 37 patients (mean [SD] age, 11.0 [5.5] years; 22 male [59.5%]). No patients required hospitalization due to COVID-19. The most common symptoms included low-grade fever, fatigue, cough, and myalgia with resolution within a few days. Two patients, aged 9 and 19 years, had extended cough and fatigue for 3 to 4 weeks. One patient developed COVID-19 within 6 weeks of receiving intravenous immunoglobulin for KD. Conclusions and Relevance: These findings suggest that the mRNA vaccines may be safe and COVID-19 may not be severe for patients with a history of KD.


Subject(s)
COVID-19 , Mucocutaneous Lymph Node Syndrome , Viral Vaccines , 2019-nCoV Vaccine mRNA-1273 , Adolescent , BNT162 Vaccine , COVID-19/complications , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Cough/etiology , Fatigue/etiology , Humans , Male , RNA, Messenger , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , Vaccination/adverse effects , Vaccines, Inactivated/adverse effects , Vaccines, Synthetic , Viral Vaccines/adverse effects , mRNA Vaccines
5.
Am J Case Rep ; 23: e936896, 2022 Aug 10.
Article in English | MEDLINE | ID: covidwho-1988528

ABSTRACT

BACKGROUND Guillain-Barre syndrome (GBS) is an autoimmune condition that presents as weakness, numbness, paresthesia, and areflexia. GBS may occur following infection or vaccination. The pathogenesis of GBS is characterized by inflammatory infiltrates and segmental demyelination. The mechanism of GBS following COVID-19 vaccination is hypothesized to arise from an autoimmune-mediated mechanism leading to an increase in inflammatory cytokines. While there were no reported cases of GBS during the mRNA COVID-19 vaccination clinical trials, there have been a few case reports of GBS following COVID-19 vaccination. CASE REPORT We report a case of symmetric weakness and paresthesia that began 3 days after the patient received his first dose of the Moderna COVID-19 vaccine. Cerebrospinal fluid (CSF) studies demonstrated albuminocytologic dissociation. The combination of the patient's CSF findings and clinical symptoms was concerning for Guillain-Barre syndrome. Given the clinical findings 3 days following COVID-19 vaccination, there was a high concern for COVID-19 vaccine-induced GBS. The patient was treated with IVIG followed by plasmapheresis but failed to show significant improvement from either treatment. CONCLUSIONS Our case report demonstrates occurrence of GBS soon after the patient received the COVID-19 Moderna vaccine. Although rare, there is some evidence to support an association between COVID-19 vaccination and GBS, but this is generally limited to case reports and case series. Clinicians, however, should remain vigilant to mitigate potential risks, such as autonomic dysfunction, respiratory failure, permanent disability, and death in patients who develop GBS after vaccination.


Subject(s)
COVID-19 , Guillain-Barre Syndrome , 2019-nCoV Vaccine mRNA-1273 , COVID-19 Vaccines/adverse effects , Guillain-Barre Syndrome/diagnosis , Guillain-Barre Syndrome/etiology , Humans , Paresthesia
6.
Transpl Immunol ; 74: 101670, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1984170

ABSTRACT

BACKGROUND: SARS-CoV-2 vaccination is strongly recommended in kidney transplant recipients (KTR) and dialysis patients. Whether these vaccinations may trigger alloantibodies, is still debated. METHODS: In the current study we evaluated the effect of SARS-CoV-2 mRNA vaccines on anti-Human Leukocyte Antigen (HLA) and 60 anti-non-HLA antibody profiles in clinically stable KTR and dialysis patients. In total, we included 28 KTR, 30 patients on haemodialysis, 25 patients on peritoneal dialysis and 31 controls with a positive seroresponse 16-21 days after the first dose of either the SARS-CoV-2 mRNA BNT162b2 or mRNA-1273 vaccine. Both anti-HLA and anti-non-HLA antibodies were determined prior to vaccination and 21 to 35 days after the second vaccine dose. RESULTS: Overall, the proportion of patients with detectable anti-HLA antibodies was similar before and after vaccination (class I 14% vs. 16%, p = 0.48; class II 25% before and after vaccination). After vaccination, there was no pattern in 1) additionally detected anti-HLA antibodies, or 2) the levels of pre-existing ones. Additional anti-non-HLA antibodies were detected in 30% of the patients, ranging from 1 to 5 new anti-non-HLA antibodies per patient. However, the clinical significance of anti-non-HLA antibodies is still a matter of debate. To date, only a significant association has been found for anti-non-HLA ARHGDIB antibodies and long-term kidney graft loss. No additionally developed anti-ARHGDIB antibodies or elevated level of existing anti-ARHGDIB antibodies was observed. CONCLUSION: The current data indicate that SARS-CoV-2 mRNA vaccination does not induce anti-HLA or anti-non-HLA antibodies, corroborating the importance of vaccinating KTR and dialysis patients.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Graft Rejection , HLA Antigens/genetics , Histocompatibility Antigens , Histocompatibility Antigens Class I , Histocompatibility Antigens Class II , Humans , RNA, Messenger , Renal Dialysis , Vaccination , rho Guanine Nucleotide Dissociation Inhibitor beta
7.
Eur Rev Med Pharmacol Sci ; 26(14): 5297-5306, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1975731

ABSTRACT

OBJECTIVE: To gain insight into the different protective mechanisms of approved vaccines, this study focuses on the comparison of humoral and cellular immune responses of five widely used vaccines including ChAdOx1 (AZD1222, AstraZeneca), BNT162b2 (Pfizer), mRNA-1273 (Moderna), BBIBP-CorV (Sinopharm), and Gam-COVID-Vac (Sputnik V). MATERIALS AND METHODS: Isolated plasma from 95 volunteers' blood samples was used to measure anti-SARS-CoV-2 humoral and cellular immune responses. Positive controls were recovered patients from COVID-19 (unvaccinated). Specific quantification kits for anti-nucleocapsid IgG, anti-Spike protein IgG, neutralizing antibodies as well as specific SARS-CoV-2 antigens for T-cell activation were used and Spearman correlation and matrix analyses were performed to compare overall immune responses. RESULTS: Nucleocapsid antibodies were significantly higher for the BBIBP-CorV and convalescent group when compared to other vaccines. In contrast, subjects vaccinated with BNT162b2 and mRNA-1273 presented significantly higher anti-spike IgG. In fact, 9.1% of convalescent, 4.5% of Gam-COVID-Vac, 28.6% of ChAdOx1, and 12.5% of BBIBP-CorV volunteers did not generate anti-spike IgG. Similarly, a positive correlation was observed after the neutralization assay. T-cell activation studies showed that mRNA-based vaccines induced a T-cell driven immune response in all cases, while 55% of convalescents,  8% of BNT162b1,  12,5% of mRNA-1273, 9% of Gam-COVID-Vac,  57% of ChAdOx1,  and  56% of BBIBP-CorV subjects presented no cellular response. Further correlation matrix analyses indicated that anti-spike IgG and neutralizing antibodies production, and T-cell activation follow the same trend after immunization. CONCLUSIONS: RNA-based vaccines induced the most robust adaptive immune activation against SARS-CoV-2 by promoting a significantly higher T-cell response, anti-spike IgG and neutralization levels. Vector-based vaccines protected against the virus at a comparable level to convalescent patients.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , BNT162 Vaccine , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Humans , Hungary , Immunoglobulin G , RNA, Messenger , SARS-CoV-2 , Vaccination
8.
Yakugaku Zasshi ; 142(8): 867-874, 2022.
Article in Japanese | MEDLINE | ID: covidwho-1968825

ABSTRACT

Particular batches of Moderna mRNA Coronavirus Disease 2019 (COVID-19) vaccine were recalled after foreign particles were found in some vaccine vials at the vaccination site in Japan in August 2021. We investigated the foreign particles at the request of the Ministry of Health, Labour and Welfare. Energy dispersive X-ray spectroscopy analysis suggested that the foreign particles found in the vials recalled from the vaccination sites were from stainless steel SUS 316L, which was in line with the findings of the root cause investigation by the manufacturer. The sizes of the observed particles ranged from <50 µm to 548 µm in the major axis. Similar foreign particles were also detected in 2 of the 5 vaccine vials of the same lot stored by the manufacturer, indicating that the foreign particles have already been administered to some people via vaccine. Observation of the vials of the same lot by digital microscope found smaller particles those were not detected by visual inspection, suggesting that more vials were affected. Contrarily, visual inspection and subvisible particulate matter test indicated no foreign particles in the vials of normal lots. Possible root cause and strategies to prevent such a deviation were discussed from technical and regulatory aspects.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Japan/epidemiology , Particulate Matter
9.
PLoS Med ; 19(7): e1004056, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1962980

ABSTRACT

BACKGROUND: Myocarditis and pericarditis following the Coronavirus Disease 2019 (COVID-19) mRNA vaccines administration have been reported, but their frequency is still uncertain in the younger population. This study investigated the association between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mRNA vaccines, BNT162b2, and mRNA-1273 and myocarditis/pericarditis in the population of vaccinated persons aged 12 to 39 years in Italy. METHODS AND FINDINGS: We conducted a self-controlled case series study (SCCS) using national data on COVID-19 vaccination linked to emergency care/hospital discharge databases. The outcome was the first diagnosis of myocarditis/pericarditis between 27 December 2020 and 30 September 2021. Exposure risk period (0 to 21 days from the vaccination day, subdivided in 3 equal intervals) for first and second dose was compared with baseline period. The SCCS model, adapted to event-dependent exposures, was fitted using unbiased estimating equations to estimate relative incidences (RIs) and excess of cases (EC) per 100,000 vaccinated by dose, age, sex, and vaccine product. Calendar period was included as time-varying confounder in the model. During the study period 2,861,809 persons aged 12 to 39 years received mRNA vaccines (2,405,759 BNT162b2; 456,050 mRNA-1273); 441 participants developed myocarditis/pericarditis (346 BNT162b2; 95 mRNA-1273). Within the 21-day risk interval, 114 myocarditis/pericarditis events occurred, the RI was 1.99 (1.30 to 3.05) after second dose of BNT162b2 and 2.22 (1.00 to 4.91) and 2.63 (1.21 to 5.71) after first and second dose of mRNA-1273. During the [0 to 7) days risk period, an increased risk of myocarditis/pericarditis was observed after first dose of mRNA-1273, with RI of 6.55 (2.73 to 15.72), and after second dose of BNT162b2 and mRNA-1273, with RIs of 3.39 (2.02 to 5.68) and 7.59 (3.26 to 17.65). The number of EC for second dose of mRNA-1273 was 5.5 per 100,000 vaccinated (3.0 to 7.9). The highest risk was observed in males, at [0 to 7) days after first and second dose of mRNA-1273 with RI of 12.28 (4.09 to 36.83) and RI of 11.91 (3.88 to 36.53); the number of EC after the second dose of mRNA-1273 was 8.8 (4.9 to 12.9). Among those aged 12 to 17 years, the RI was of 5.74 (1.52 to 21.72) after second dose of BNT162b2; for this age group, the number of events was insufficient for estimating RIs after mRNA-1273. Among those aged 18 to 29 years, the RIs were 7.58 (2.62 to 21.94) after first dose of mRNA-1273 and 4.02 (1.81 to 8.91) and 9.58 (3.32 to 27.58) after second dose of BNT162b2 and mRNA-1273; the numbers of EC were 3.4 (1.1 to 6.0) and 8.6 (4.4 to 12.6) after first and second dose of mRNA-1273. The main study limitations were that the outcome was not validated through review of clinical records, and there was an absence of information on the length of hospitalization and, thus, the severity of the outcome. CONCLUSIONS: This population-based study of about 3 millions of residents in Italy suggested that mRNA vaccines were associated with myocarditis/pericarditis in the population younger than 40 years. According to our results, increased risk of myocarditis/pericarditis was associated with the second dose of BNT162b2 and both doses of mRNA-1273. The highest risks were observed in males of 12 to 39 years and in males and females 18 to 29 years vaccinated with mRNA-1273. The public health implication of these findings should be considered in the light of the proven mRNA vaccine effectiveness in preventing serious COVID-19 disease and death.


Subject(s)
COVID-19 Vaccines , COVID-19 , Myocarditis , Pericarditis , 2019-nCoV Vaccine mRNA-1273 , Adolescent , Adult , BNT162 Vaccine , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Female , Humans , Italy/epidemiology , Male , Myocarditis/chemically induced , Myocarditis/epidemiology , Pericarditis/chemically induced , Pericarditis/epidemiology , Product Surveillance, Postmarketing , SARS-CoV-2 , Vaccination/adverse effects , Young Adult
10.
Neurol Neuroimmunol Neuroinflamm ; 9(4)2022 07.
Article in English | MEDLINE | ID: covidwho-1962935

ABSTRACT

BACKGROUND AND OBJECTIVES: Evidence regarding the safety and efficacy of messenger RNA (mRNA) vaccines in patients with myasthenia gravis (MG) after immunosuppressive therapies is scarce. Our aim is to determine whether the mRNA-1273 vaccine is safe and able to induce humoral and cellular responses in patients with MG. METHODS: We performed an observational, longitudinal, prospective study including 100 patients with MG of a referral center for MG in our country, conducted from April 2021 to November 2021 during the vaccination campaign. The mRNA-1273 vaccine was scheduled for all participants. Blood samples were collected before vaccination and 3 months after a second dose. Clinical changes in MG were measured using the MG activities of daily life score at baseline and 1 week after the first and second doses. A surveillance of all symptoms of coronavirus disease 2019 (COVID-19) was conducted throughout the study. Humoral and cellular immune responses after vaccination were assessed using a spike-antibody ELISA and interferon gamma release assay in plasma. The primary outcomes were clinically significant changes in MG symptoms after vaccination, adverse events (AEs), and seroconversion and T-cell immune response rates. RESULTS: Ninety-nine patients completed the full vaccination schedule, and 98 had 2 blood samples taken. A statistically significant worsening of symptoms was identified after the first and second doses of the mRNA-1273 vaccine, but this was not clinically relevant. Mild AEs occurred in 14 patients after the first dose and in 21 patients after the second dose. Eighty-seven patients developed a humoral response and 72 patients showed a T-cell response after vaccination. A combined therapy with prednisone and other immunosuppressive drugs correlated with a lower seroconversion ratio (OR = 5.97, 95% CI 1.46-24.09, p = 0.015) and a lower T-cell response ratio (OR = 2.83, 95% CI 1.13-7.13, p = 0.024). DISCUSSION: Our findings indicate that the mRNA vaccination against COVID-19 is safe in patients with MG and show no negative impact on the disease course. Patients achieved high humoral and cellular immune response levels. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that patients with MG receiving the mRNA-1273 vaccine did not show clinical worsening after vaccination and that most of the patients achieved high cellular or immune response levels.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Myasthenia Gravis , 2019-nCoV Vaccine mRNA-1273/adverse effects , 2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Viral/blood , COVID-19/prevention & control , Humans , Immunity, Cellular , Immunity, Humoral , Longitudinal Studies , Myasthenia Gravis/complications , Prospective Studies , SARS-CoV-2 , T-Lymphocytes/immunology
11.
BMJ Case Rep ; 15(7)2022 Jul 28.
Article in English | MEDLINE | ID: covidwho-1962124

ABSTRACT

Thrombotic thrombocytopenic purpura (TTP) is a life-threatening disease that may be triggered by inflammation, including infection or vaccination. Since the start of the COVID-19 pandemic, several case reports were published on de novo or relapsed immune TTP (iTTP) in COVID-19-infected patients. Case reports of iTTP episodes following vaccination against COVID-19 are also emerging. We report a case of relapsed iTTP in a patient who received Moderna mRNA-1273 SARS-CoV-2 vaccine and developed concurrent severe COVID-19 infection. The patient's iTTP was successfully managed with caplacizumab, therapeutic plasma exchange and high-dose steroids. We summarise published cases of iTTP associated with COVID-19 infection or vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Purpura, Thrombocytopenic, Idiopathic , Purpura, Thrombotic Thrombocytopenic , 2019-nCoV Vaccine mRNA-1273 , COVID-19/pathology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Pandemics , Plasma Exchange , Purpura, Thrombocytopenic, Idiopathic/chemically induced , Purpura, Thrombocytopenic, Idiopathic/therapy , Purpura, Thrombotic Thrombocytopenic/chemically induced , Purpura, Thrombotic Thrombocytopenic/therapy , Recurrence , SARS-CoV-2 , Vaccination/adverse effects
12.
Elife ; 112022 07 15.
Article in English | MEDLINE | ID: covidwho-1954755

ABSTRACT

Background: Patients affected by different types of autoimmune diseases, including common conditions such as multiple sclerosis (MS) and rheumatoid arthritis (RA), are often treated with immunosuppressants to suppress disease activity. It is not fully understood how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific humoral and cellular immunity induced by infection and/or upon vaccination is affected by immunosuppressants. Methods: The dynamics of cellular immune reactivation upon vaccination of SARS-CoV-2 experienced MS patients treated with the humanized anti-CD20 monoclonal antibody ocrelizumab (OCR) and RA patients treated with methotrexate (MTX) monotherapy were analyzed at great depth via high-dimensional flow cytometry of whole blood samples upon vaccination with the SARS-CoV-2 mRNA-1273 (Moderna) vaccine. Longitudinal B and T cell immune responses were compared to SARS-CoV-2 experienced healthy controls (HCs) before and 7 days after the first and second vaccination. Results: OCR-treated MS patients exhibit a preserved recall response of CD8+ T central memory cells following first vaccination compared to HCs and a similar CD4+ circulating T follicular helper 1 and T helper 1 dynamics, whereas humoral and B cell responses were strongly impaired resulting in absence of SARS-CoV-2-specific humoral immunity. MTX treatment significantly delayed antibody levels and B reactivation following the first vaccination, including sustained inhibition of overall reactivation marker dynamics of the responding CD4+ and CD8+ T cells. Conclusions: Together, these findings indicate that SARS-CoV-2 experienced MS-OCR patients may still benefit from vaccination by inducing a broad CD8+ T cell response which has been associated with milder disease outcome. The delayed vaccine-induced IgG kinetics in RA-MTX patients indicate an increased risk after the first vaccination, which might require additional shielding or alternative strategies such as treatment interruptions in vulnerable patients. Funding: This research project was supported by ZonMw (The Netherlands Organization for Health Research and Development, #10430072010007), the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement (#792532 and #860003), the European Commission (SUPPORT-E, #101015756) and by PPOC (#20_21 L2506), the NHMRC Leadership Investigator Grant (#1173871).


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Multiple Sclerosis , Viral Vaccines , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , Arthritis, Rheumatoid/drug therapy , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , Humans , Immunosuppressive Agents/therapeutic use , Multiple Sclerosis/drug therapy , SARS-CoV-2 , Vaccination , Viral Vaccines/genetics
13.
Intern Med ; 61(9): 1371-1374, 2022 May 01.
Article in English | MEDLINE | ID: covidwho-1951858

ABSTRACT

We herein report a case of acute myocarditis possibly related to the second dose of an mRNA-coronavirus disease 2019 vaccine in a 45-year-old woman with no remarkable medical history. She had a fever for one week following the second dose of the mRNA-1273 severe acute respiratory syndrome coronavirus 2 vaccine. One week later, she presented with chest pain and electrocardiogram changes. Her serum troponin levels were elevated upon admission. Echocardiography showed segmental wall motion abnormalities of the apex, apical portion of the anterior and inferior walls. The findings of cardiac magnetic resonance imaging were consistent with acute myocarditis.


Subject(s)
COVID-19 , Myocarditis , 2019-nCoV Vaccine mRNA-1273 , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Female , Humans , Middle Aged , Myocarditis/diagnostic imaging , Myocarditis/etiology , SARS-CoV-2 , Vaccination
14.
BMJ Case Rep ; 15(5)2022 May 09.
Article in English | MEDLINE | ID: covidwho-1950068

ABSTRACT

A Caucasian man in his 60s with a medical history significant for ruptured left middle cerebral artery aneurysm status post clipping 2005 with residual right eye blindness and right leg weakness with gait instability presented with loss of balance, weakness of his legs and fatigue for 3 days. No other antecedent event was identified other than receiving Moderna COVID-19 vaccine 4 weeks before the presentation and 3 days before symptom onset. CT head and CT angiogram of the head and neck were performed and demonstrated no acute intracranial bleeding and no vascular abnormalities. With the findings of diffuse hyporeflexia and cerebrospinal fluid showing albumino-cytological dissociation, Guillain-Barré syndrome was high on the differentials. Electromyogram showed evidence of demyelination. He was treated with intravenous immune globulin (IVIG) and was discharged to rehab with complete symptom resolution.


Subject(s)
COVID-19 , Guillain-Barre Syndrome , Vaccines , 2019-nCoV Vaccine mRNA-1273 , Guillain-Barre Syndrome/diagnosis , Guillain-Barre Syndrome/etiology , Guillain-Barre Syndrome/therapy , Humans , Immunoglobulins, Intravenous/therapeutic use , Male
15.
Lancet Infect Dis ; 22(8): 1131-1141, 2022 08.
Article in English | MEDLINE | ID: covidwho-1946941

ABSTRACT

BACKGROUND: Some high-income countries have deployed fourth doses of COVID-19 vaccines, but the clinical need, effectiveness, timing, and dose of a fourth dose remain uncertain. We aimed to investigate the safety, reactogenicity, and immunogenicity of fourth-dose boosters against COVID-19. METHODS: The COV-BOOST trial is a multicentre, blinded, phase 2, randomised controlled trial of seven COVID-19 vaccines given as third-dose boosters at 18 sites in the UK. This sub-study enrolled participants who had received BNT162b2 (Pfizer-BioNTech) as their third dose in COV-BOOST and randomly assigned them (1:1) to receive a fourth dose of either BNT162b2 (30 µg in 0·30 mL; full dose) or mRNA-1273 (Moderna; 50 µg in 0·25 mL; half dose) via intramuscular injection into the upper arm. The computer-generated randomisation list was created by the study statisticians with random block sizes of two or four. Participants and all study staff not delivering the vaccines were masked to treatment allocation. The coprimary outcomes were safety and reactogenicity, and immunogenicity (anti-spike protein IgG titres by ELISA and cellular immune response by ELISpot). We compared immunogenicity at 28 days after the third dose versus 14 days after the fourth dose and at day 0 versus day 14 relative to the fourth dose. Safety and reactogenicity were assessed in the per-protocol population, which comprised all participants who received a fourth-dose booster regardless of their SARS-CoV-2 serostatus. Immunogenicity was primarily analysed in a modified intention-to-treat population comprising seronegative participants who had received a fourth-dose booster and had available endpoint data. This trial is registered with ISRCTN, 73765130, and is ongoing. FINDINGS: Between Jan 11 and Jan 25, 2022, 166 participants were screened, randomly assigned, and received either full-dose BNT162b2 (n=83) or half-dose mRNA-1273 (n=83) as a fourth dose. The median age of these participants was 70·1 years (IQR 51·6-77·5) and 86 (52%) of 166 participants were female and 80 (48%) were male. The median interval between the third and fourth doses was 208·5 days (IQR 203·3-214·8). Pain was the most common local solicited adverse event and fatigue was the most common systemic solicited adverse event after BNT162b2 or mRNA-1273 booster doses. None of three serious adverse events reported after a fourth dose with BNT162b2 were related to the study vaccine. In the BNT162b2 group, geometric mean anti-spike protein IgG concentration at day 28 after the third dose was 23 325 ELISA laboratory units (ELU)/mL (95% CI 20 030-27 162), which increased to 37 460 ELU/mL (31 996-43 857) at day 14 after the fourth dose, representing a significant fold change (geometric mean 1·59, 95% CI 1·41-1·78). There was a significant increase in geometric mean anti-spike protein IgG concentration from 28 days after the third dose (25 317 ELU/mL, 95% CI 20 996-30 528) to 14 days after a fourth dose of mRNA-1273 (54 936 ELU/mL, 46 826-64 452), with a geometric mean fold change of 2·19 (1·90-2·52). The fold changes in anti-spike protein IgG titres from before (day 0) to after (day 14) the fourth dose were 12·19 (95% CI 10·37-14·32) and 15·90 (12·92-19·58) in the BNT162b2 and mRNA-1273 groups, respectively. T-cell responses were also boosted after the fourth dose (eg, the fold changes for the wild-type variant from before to after the fourth dose were 7·32 [95% CI 3·24-16·54] in the BNT162b2 group and 6·22 [3·90-9·92] in the mRNA-1273 group). INTERPRETATION: Fourth-dose COVID-19 mRNA booster vaccines are well tolerated and boost cellular and humoral immunity. Peak responses after the fourth dose were similar to, and possibly better than, peak responses after the third dose. FUNDING: UK Vaccine Task Force and National Institute for Health Research.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Aged , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Female , Humans , Immunogenicity, Vaccine , Immunoglobulin G , Male , Middle Aged , SARS-CoV-2
16.
J Neurol ; 269(8): 4000-4012, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1941616

ABSTRACT

BACKGROUND: Assessing the safety of SARS-CoV-2 mRNA vaccines and the effect of immunotherapies on the seroconversion rate in patients with autoimmune neurological conditions (ANC) is relevant to clinical practice. Our aim was to assess the antibody response to and safety of SARS-CoV-2 mRNA vaccines in ANC. METHODS: This longitudinal study included ANC patients vaccinated with two doses of BNT162b2 or mRNA-1273 between March and August 2021. Side effects were assessed 2-10 days after each dose. Neurological status and anti-spike receptor binding domain antibody levels were evaluated before vaccination and 4 weeks after the second dose. Healthcare-workers served as controls for antibody levels. RESULTS: We included 300 ANC patients (median age 52, IQR 40-65), and 347 healthcare-workers (median age 45, IQR 34-54). mRNA-1273 vaccine was associated with an increased risk of both local (OR 2.52 95% CI 1.45-4.39, p = 0.001) and systemic reactions (OR 2.51% CI 1.49-4.23, p = 0.001). The incidence of relapse was not different before and after vaccine (Incidence rate ratio 0.72, 95% CI 0.29-1.83). Anti-SARS-CoV-2 IgG were detected in 268 (89.9%) patients and in all controls (p < 0.0001). BNT162b2 vaccine (OR 8.84 95% CI 2.32-33.65, p = 0.001), anti-CD20 mAb (OR 0.004 95% CI 0.0007-0.026, p < 0.0001) and fingolimod (OR 0.036 95% CI 0.002-0.628, p = 0·023) were associated with an increased risk of not developing anti-SARS-CoV-2 IgG. CONCLUSION: SARS-CoV-2 mRNA vaccines were safe in a large group of ANC patients. Anti-CD20 and fingolimod treatment, as well as vaccination with the BNT162b2 vaccine, led to a reduced humoral response. These findings could inform vaccine policies in ANC patients undergoing immunotherapy.


Subject(s)
Autoimmune Diseases of the Nervous System , COVID-19 Vaccines , COVID-19 , Immunity, Humoral , 2019-nCoV Vaccine mRNA-1273 , Adult , Aged , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Fingolimod Hydrochloride , Humans , Immunoglobulin G , Longitudinal Studies , Middle Aged , SARS-CoV-2
17.
Front Immunol ; 13: 898192, 2022.
Article in English | MEDLINE | ID: covidwho-1933688

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is a threat to the health of the global population. As the result of a global effort in the determination of origin, structure, and pathogenesis of SARS-CoV-2 and its variants, particularly such the variant of concern as Delta Variant and Omicron Variant, the understanding of SARS-CoV-2 are deepening and the development of vaccines against SARS-CoV-2 are ongoing. Currently, AstraZeneca-Vaxzevria/SII-Covishield vaccine, Janssen-Ad26.COV2.S vaccine, Moderna-mRNA-1273 vaccine, Pfizer BioNTech-Comirnaty vaccine and Sinovac-CoronaVac vaccine have been listed as WHO Emergency Use Listing (EUL) Qualified Vaccines by WHO. Because of the antigen escape caused by the mutation in variants, the effectiveness of vaccines, which are currently the main means of prevention and treatment, has been affected by varying degrees. Herein, we review the current status of mutations of SARS-CoV-2 variants, the different approaches used in the development of COVID-19 vaccines, and COVID-19 vaccine effectiveness against SARS-CoV-2 variants.


Subject(s)
COVID-19 , Vaccines , 2019-nCoV Vaccine mRNA-1273 , Ad26COVS1 , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2/genetics
18.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: covidwho-1932900

ABSTRACT

Vaccine-elicited SARS-CoV-2 antibody responses are an established correlate of protection against viral infection in humans and nonhuman primates. However, it is less clear that vaccine-induced immunity is able to limit infection-elicited inflammation in the lower respiratory tract. To assess this, we collected bronchoalveolar lavage fluid samples after SARS-CoV-2 strain USA-WA1/2020 challenge from rhesus macaques vaccinated with mRNA-1273 in a dose-reduction study. Single-cell transcriptomic profiling revealed a broad cellular landscape 48 hours after challenge, with distinct inflammatory signatures that correlated with viral RNA burden in the lower respiratory tract. These inflammatory signatures included phagocyte-restricted expression of chemokines, such as CXCL10 and CCL3, and the broad expression of IFN-induced genes, such as MX1, ISG15, and IFIT1. Induction of these inflammatory profiles was suppressed by prior mRNA-1273 vaccination in a dose-dependent manner and negatively correlated with prechallenge serum and lung antibody titers against SARS-CoV-2 spike. These observations were replicated and validated in a second independent macaque challenge study using the B.1.351/Beta variant of SARS-CoV-2. These data support a model wherein vaccine-elicited antibody responses restrict viral replication following SARS-CoV-2 exposure, including limiting viral dissemination to the lower respiratory tract and infection-mediated inflammation and pathogenesis.


Subject(s)
COVID-19 , Viral Vaccines , 2019-nCoV Vaccine mRNA-1273 , Animals , COVID-19/prevention & control , Humans , Inflammation , Macaca mulatta , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccination
19.
BMJ ; 378: e070483, 2022 07 13.
Article in English | MEDLINE | ID: covidwho-1932664

ABSTRACT

OBJECTIVE: To assess the risk of adverse events associated with heterologous primary (two dose) and booster (three dose) vaccine schedules for covid-19 with Oxford-AstraZeneca's ChAdOx1-S priming followed by mRNA vaccines (Pfizer-BioNTech's BNT162b2 or Moderna's mRNA-1273) as compared with homologous mRNA vaccine schedules for covid-19. DESIGN: Nationwide cohort study. SETTING: Denmark, 1 January 2021 to 26 March 2022. PARTICIPANTS: Adults aged 18-65 years who received a heterologous vaccine schedule of priming with ChAdOx1-S and one or two mRNA booster doses (with either the BNT162b2 or mRNA-1273 vaccine) were compared with adults who received a homologous BNT162b2 or mRNA-1273 vaccine schedule (ie, two dose v two dose, and three dose v three dose schedule). MAIN OUTCOME MEASURES: The incidence of hospital contacts for a range of adverse cardiovascular and haemostatic events within 28 days after the second or third vaccine dose, comparing heterologous versus homologous vaccine schedules. Secondary outcomes included additional prioritised adverse events of special interest. Poisson regression was used to estimate incidence rate ratios with adjustment for selected covariates. RESULTS: Individuals who had had a heterologous primary vaccine (n=137 495) or a homologous vaccine (n=2 688 142) were identified, in addition to those who had had a heterologous booster (n=129 770) or a homologous booster (n=2 197 213). Adjusted incidence rate ratios of adverse cardiovascular and haemostatic events within 28 days for the heterologous primary and booster vaccine schedules in comparison with the homologous mRNA vaccine schedules were 1.22 (95% confidence interval 0.79 to 1.91) and 1.00 (0.58 to 1.72) for ischaemic cardiac events, 0.74 (0.40 to 1.34) and 0.72 (0.37 to 1.42) for cerebrovascular events, 1.12 (0.13 to 9.58) and 4.74 (0.94 to 24.01) for arterial thromboembolisms, 0.79 (0.45 to 1.38) and 1.09 (0.60 to 1.98) for venous thromboembolisms, 0.84 (0.18 to 3.96) and 1.04 (0.60 to 4.55) for myocarditis or pericarditis, 0.97 (0.45 to 2.10) and 0.89 (0.21 to 3.77) for thrombocytopenia and coagulative disorders, and 1.39 (1.01 to 1.91) and 1.02 (0.70 to 1.47) for other bleeding events, respectively. No associations with any of the outcomes were found when restricting to serious adverse events defined as stay in hospital for more than 24 h. CONCLUSION: Heterologous primary and booster covid-19 vaccine schedules of ChAdOx1-S priming and mRNA booster doses as both second and third doses were not associated with increased risk of serious adverse events compared with homologous mRNA vaccine schedules. These results are reassuring but given the rarity of some of the adverse events, associations cannot be excluded.


Subject(s)
COVID-19 , Hemostatics , Thromboembolism , mRNA Vaccines , 2019-nCoV Vaccine mRNA-1273/adverse effects , Adult , BNT162 Vaccine/adverse effects , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Cohort Studies , Humans , Immunization, Secondary , RNA, Messenger , Thromboembolism/etiology , Vaccination/adverse effects , Vaccines, Synthetic , mRNA Vaccines/adverse effects
20.
Front Public Health ; 10: 863125, 2022.
Article in English | MEDLINE | ID: covidwho-1924174

ABSTRACT

The availability of the COVID-19 vaccine in the US created an urgent need for strategies to achieve widespread vaccine distribution, but approaches to achieving equitable distribution, including reaching communities of color, varied across the country. To add to the knowledge base around targeted vaccine roll-out among underserved communities, the current study presents results from patient vaccination data and staff interviews conducted at Sinai Chicago, a safety-net healthcare system serving under-resourced communities. A total of 11,313 patients received at least one dose of Pfizer or Moderna COVID-19 vaccine between January and October 2021 at a Sinai Chicago facility. The sample was primarily comprised of Hispanic and non-Hispanic Black persons, with a mean age of 47 years, and was split evenly between female and male individuals. Compared to non-Hispanic White persons, Hispanic persons were 1.4 times more likely to have completed the full course of vaccination, while non-Hispanic Black persons were 40% less likely. People ages 18-24 were less likely to be fully vaccinated compared to all other adult age groups. Compared to privately insured persons, publicly insured persons were 40% less likely to have been fully vaccinated. The vaccine roll-out approach focused on educating the community through town halls and targeted messaging to address common myths and misconceptions about the vaccine, as well as developing the necessary infrastructure to administer the vaccine in a variety of community settings. This study illustrates COVID-19 vaccine roll-out in an under-resourced urban area in Chicago and provides insight on future implementation of vaccine intervention in hard to reach communities.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Adolescent , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Chicago , Female , Hispanic or Latino , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL