Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
1.
Int J Mol Sci ; 23(18)2022 Sep 07.
Article in English | MEDLINE | ID: covidwho-2010122

ABSTRACT

Inhibition of inflammatory responses from the spike glycoprotein of SARS-CoV-2 (Spike) by targeting NLRP3 inflammasome has recently been developed as an alternative form of supportive therapy besides the traditional anti-viral approaches. Clerodendrum petasites S. Moore (C. petasites) is a Thai traditional medicinal plant possessing antipyretic and anti-inflammatory activities. In this study, C. petasites ethanolic root extract (CpEE) underwent solvent-partitioned extraction to obtain the ethyl acetate fraction of C. petasites (CpEA). Subsequently, C. petasites extracts were determined for the flavonoid contents and anti-inflammatory properties against spike induction in the A549 lung cells. According to the HPLC results, CpEA significantly contained higher amounts of hesperidin and hesperetin flavonoids than CpEE (p < 0.05). A549 cells were then pre-treated with either C. petasites extracts or its active flavonoids and were primed with 100 ng/mL of spike S1 subunit (Spike S1) and determined for the anti-inflammatory properties. The results indicate that CpEA (compared with CpEE) and hesperetin (compared with hesperidin) exhibited greater anti-inflammatory properties upon Spike S1 induction through a significant reduction in IL-6, IL-1ß, and IL-18 cytokine releases in A549 cells culture supernatant (p < 0.05). Additionally, CpEA and hesperetin significantly inhibited the Spike S1-induced inflammatory gene expressions (NLRP3, IL-1ß, and IL-18, p < 0.05). Mechanistically, CpEA and hesperetin attenuated inflammasome machinery protein expressions (NLRP3, ASC, and Caspase-1), as well as inactivated the Akt/MAPK/AP-1 pathway. Overall, our findings could provide scientific-based evidence to support the use of C. petasites and hesperetin in the development of supportive therapies for the prevention of COVID-19-related chronic inflammation.


Subject(s)
Antipyretics , COVID-19 , Clerodendrum , Hesperidin , Petasites , A549 Cells , Anti-Inflammatory Agents/pharmacology , COVID-19/drug therapy , Caspase 1/metabolism , Clerodendrum/metabolism , Cytokines/metabolism , Flavonoids/pharmacology , Hesperidin/pharmacology , Humans , Inflammasomes/metabolism , Interleukin-18 , Interleukin-6 , Lung/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt , SARS-CoV-2 , Solvents , Spike Glycoprotein, Coronavirus , Transcription Factor AP-1
2.
Medicine (Baltimore) ; 101(35): e29554, 2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2008659

ABSTRACT

BACKGROUND: Coronavirus (CoV) disease (COVID-19) identified in Wuhan, China, in 2019, is mainly characterized by atypical pneumonia and severe acute respiratory syndrome (SARS) and is caused by SARS CoV-2, which belongs to the Coronaviridae family. Determining the underlying disease mechanisms is central to the identification and development of COVID-19-specific drugs for effective treatment and prevention of human-to-human transmission, disease complications, and deaths. METHODS: Here, next-generation RNA sequencing (RNA Seq) data were obtained using Illumina Next Seq 500 from SARS CoV-infected A549 cells and mock-treated A549 cells from the Gene Expression Omnibus (GEO) (GSE147507), and quality control (QC) was assessed before RNA Seq analysis using CLC Genomics Workbench 20.0. Differentially expressed genes (DEGs) were imported into BioJupies to decipher COVID-19 induced signaling pathways and small molecules derived from chemical synthesis or natural sources to mimic or reverse COVID -19 specific gene signatures. In addition, iPathwayGuide was used to identify COVID-19-specific signaling pathways, as well as drugs and natural products with anti-COVID-19 potential. RESULTS: Here, we identified the potential activation of upstream regulators such as signal transducer and activator of transcription 2 (STAT2), interferon regulatory factor 9 (IRF9), and interferon beta (IFNß), interleukin-1 beta (IL-1ß), and interferon regulatory factor 3 (IRF3). COVID-19 infection activated key infectious disease-specific immune-related signaling pathways such as influenza A, viral protein interaction with cytokine and cytokine receptors, measles, Epstein-Barr virus infection, and IL-17 signaling pathway. Besides, we identified drugs such as prednisolone, methylprednisolone, diclofenac, compound JQ1, and natural products such as Withaferin-A and JinFuKang as candidates for further experimental validation of COVID-19 therapy. CONCLUSIONS: In conclusion, we have used the in silico next-generation knowledge discovery (NGKD) methods to discover COVID-19-associated pathways and specific therapeutics that have the potential to ameliorate the disease pathologies associated with COVID-19.


Subject(s)
Biological Products , COVID-19 , Epstein-Barr Virus Infections , A549 Cells , COVID-19/drug therapy , Cytokines/metabolism , Diclofenac , Herpesvirus 4, Human/genetics , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Interferon-beta , Interleukin-17/metabolism , Interleukin-1beta/metabolism , Methylprednisolone , RNA , Receptors, Cytokine/genetics , SARS-CoV-2/genetics , STAT2 Transcription Factor , Sequence Analysis, RNA , Viral Proteins/genetics
3.
Int J Mol Sci ; 23(16)2022 Aug 22.
Article in English | MEDLINE | ID: covidwho-1997648

ABSTRACT

The aims of our study are to: (i) investigate the ability of nicotine to modulate the expression level of inflammatory cytokines in A549 cells infected with SARS-CoV-2; (ii) elucidate the ultrastructural features caused by the combination nicotine+SARS-CoV-2; and (iii) demonstrate the mechanism of action. In this study, A549 cells pretreated with nicotine were either exposed to LPS or poly(I:C), or infected with SARS-CoV-2. Treated and untreated cells were analyzed for cytokine production, cytotoxicity, and ultrastructural modifications. Vero E6 cells were used as a positive reference. Cells pretreated with nicotine showed a decrease of IL6 and TNFα in A549 cells induced by LPS or poly(I:C). In contrast, cells exposed to SARS-CoV-2 showed a high increase of IL6, IL8, IL10 and TNFα, high cytopathic effects that were dose- and time-dependent, and profound ultrastructural modifications. These modifications were characterized by membrane ruptures and fragmentation, the swelling of cytosol and mitochondria, the release of cytoplasmic content in extracellular spaces (including osmiophilic granules), the fragmentation of endoplasmic reticulum, and chromatin disorganization. Nicotine increased SARS-CoV-2 cytopathic effects, elevating the levels of inflammatory cytokines, and inducing severe cellular damage, with features resembling pyroptosis and necroptosis. The protective role of nicotine in COVID-19 is definitively ruled out.


Subject(s)
Nicotine , SARS-CoV-2 , A549 Cells , COVID-19 , Cell Survival/drug effects , Cytokines/metabolism , Humans , Interleukin-6 , Lipopolysaccharides , Nicotine/adverse effects , Nicotine/pharmacology , Tumor Necrosis Factor-alpha
4.
Mar Drugs ; 19(2)2021 Jan 27.
Article in English | MEDLINE | ID: covidwho-1969360

ABSTRACT

Inorganic polyphosphate (polyP) is a widely distributed polymer found from bacteria to animals, including marine species. This polymer exhibits morphogenetic as well as antiviral activity and releases metabolic energy after enzymatic hydrolysis also in human cells. In the pathogenesis of the coronavirus disease 2019 (COVID-19), the platelets are at the frontline of this syndrome. Platelets release a set of molecules, among them polyP. In addition, the production of airway mucus, the first line of body defense, is impaired in those patients. Therefore, in this study, amorphous nanoparticles of the magnesium salt of polyP (Mg-polyP-NP), matching the size of the coronavirus SARS-CoV-2, were prepared and loaded with the secondary plant metabolite quercetin or with dexamethasone to study their effects on the respiratory epithelium using human alveolar basal epithelial A549 cells as a model. The results revealed that both compounds embedded into the polyP nanoparticles significantly increased the steady-state-expression of the MUC5AC gene. This mucin species is the major mucus glycoprotein present in the secreted gel-forming mucus. The level of gene expression caused by quercetin or with dexamethasone, if caged into polyP NP, is significantly higher compared to the individual drugs alone. Both quercetin and dexamethasone did not impair the growth-supporting effect of polyP on A549 cells even at concentrations of quercetin which are cytotoxic for the cells. A possible mechanism of the effects of the two drugs together with polyP on mucin expression is proposed based on the scavenging of free oxygen species and the generation of ADP/ATP from the polyP, which is needed for the organization of the protective mucin-based mucus layer.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Dexamethasone/pharmacology , Mucin 5AC/biosynthesis , Mucin 5AC/drug effects , Quercetin/pharmacology , A549 Cells , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , COVID-19 , Dexamethasone/chemistry , Free Radical Scavengers/pharmacology , Gene Expression Regulation/drug effects , Humans , Magnesium/chemistry , Mucin 5AC/genetics , Mucins/biosynthesis , Mucins/chemistry , Nanoparticles , Particle Size , Plants/chemistry , Polyphosphates/chemistry , Quercetin/chemistry , Reactive Oxygen Species
5.
Viruses ; 14(7)2022 Jun 23.
Article in English | MEDLINE | ID: covidwho-1911648

ABSTRACT

New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to emerge, causing surges, breakthrough infections, and devastating losses-underscoring the importance of identifying SARS-CoV-2 antivirals. A simple, accessible human cell culture model permissive to SARS-CoV-2 variants is critical for identifying and assessing antivirals in a high-throughput manner. Although human alveolar A549 cells are a valuable model for studying respiratory virus infections, they lack two essential host factors for SARS-CoV-2 infection: angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). SARS-CoV-2 uses the ACE2 receptor for viral entry and TMPRSS2 to prime the SARS-CoV-2 spike protein, both of which are negligibly expressed in A549 cells. Here, we report the generation of a suitable human cell line for SARS-CoV-2 studies by transducing human ACE2 and TMPRSS2 into A549 cells. We show that subclones highly expressing ACE2 and TMPRSS2 ("ACE2plus" and the subclone "ACE2plusC3") are susceptible to infection with SARS-CoV-2, including the delta and omicron variants. These subclones express more ACE2 and TMPRSS2 transcripts than existing commercial A549 cells engineered to express ACE2 and TMPRSS2. Additionally, the antiviral drugs EIDD-1931, remdesivir, nirmatrelvir, and nelfinavir strongly inhibit SARS-CoV-2 variants in our infection model. Our data show that ACE2plusC3 cells are highly permissive to SARS-CoV-2 infection and can be used to identify anti-SARS-CoV-2 drugs.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , A549 Cells , Angiotensin-Converting Enzyme 2/genetics , Antiviral Agents/pharmacology , Humans , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/genetics , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
6.
Langmuir ; 38(26): 7976-7988, 2022 07 05.
Article in English | MEDLINE | ID: covidwho-1900415

ABSTRACT

The severity of global pandemic due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has engaged the researchers and clinicians to find the key features triggering the viral infection to lung cells. By utilizing such crucial information, researchers and scientists try to combat the spread of the virus. Here, in this work, we performed in silico analysis of the protein-protein interactions between the receptor-binding domain (RBD) of the viral spike protein and the human angiotensin-converting enzyme 2 (hACE2) receptor to highlight the key alteration that happened from SARS-CoV to SARS-CoV-2. We analyzed and compared the molecular differences between spike proteins of the two viruses using various computational approaches such as binding affinity calculations, computational alanine, and molecular dynamics simulations. The binding affinity calculations showed that SARS-CoV-2 binds a little more firmly to the hACE2 receptor than SARS-CoV. The major finding obtained from molecular dynamics simulations was that the RBD-ACE2 interface is populated with water molecules and interacts strongly with both RBD and ACE2 interfacial residues during the simulation periods. The water-mediated hydrogen bond by the bridge water molecules is crucial for stabilizing the RBD and ACE2 domains. Near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) confirmed the presence of vapor and molecular water phases in the protein-protein interfacial domain, further validating the computationally predicted interfacial water molecules. In addition, we examined the role of interfacial water molecules in virus uptake by lung cell A549 by binding and maintaining the RBD/hACE2 complex at varying temperatures using nanourchins coated with spike proteins as pseudoviruses and fluorescence-activated cell sorting (FACS) as a quantitative approach. The structural and dynamical features presented here may serve as a guide for developing new drug molecules, vaccines, or antibodies to combat the COVID-19 pandemic.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Spike Glycoprotein, Coronavirus , Water , A549 Cells , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/virology , Humans , Molecular Dynamics Simulation , Pandemics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Water/chemistry
7.
Int J Mol Sci ; 23(11)2022 May 26.
Article in English | MEDLINE | ID: covidwho-1892894

ABSTRACT

Respiratory syncytial virus (RSV) causes acute lower respiratory tract infection in infants, immunocompromised individuals and the elderly. As the only current specific treatment options for RSV are monoclonal antibodies, there is a need for efficacious antiviral treatments against RSV to be developed. We have previously shown that a group of synthetic non-coding single-stranded DNA oligonucleotides with lengths of 25-40 nucleotides can inhibit RSV infection in vitro and in vivo. Based on this, herein, we investigate whether naturally occurring single-stranded small non-coding RNA (sncRNA) fragments present in the airways have antiviral effects against RSV infection. From publicly available sequencing data, we selected sncRNA fragments such as YRNAs, tRNAs and rRNAs present in human bronchoalveolar lavage fluid (BALF) from healthy individuals. We utilized a GFP-expressing RSV to show that pre-treatment with the selected sncRNA fragments inhibited RSV infection in A549 cells in vitro. Furthermore, by using a flow cytometry-based binding assay, we demonstrate that these naturally occurring sncRNAs fragments inhibit viral infection most likely by binding to the RSV entry receptor nucleolin and thereby preventing the virus from binding to host cells, either directly or via steric hindrance. This finding highlights a new function of sncRNAs and displays the possibility of using naturally occurring sncRNAs as treatments against RSV.


Subject(s)
RNA, Small Untranslated , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , A549 Cells , Aged , Antiviral Agents/pharmacology , Humans , Infant , RNA, Small Untranslated/genetics , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus, Human/genetics
8.
Int J Mol Sci ; 23(6)2022 Mar 11.
Article in English | MEDLINE | ID: covidwho-1742489

ABSTRACT

The pandemic emergency determined by the spreading worldwide of the SARS-CoV-2 virus has focused the scientific and economic efforts of the pharmaceutical industry and governments on the possibility to fight the virus by genetic immunization. The genetic material must be delivered inside the cells by means of vectors. Due to the risk of adverse or immunogenic reaction or replication connected with the more efficient viral vectors, non-viral vectors are in many cases considered as a preferred strategy for gene delivery into eukaryotic cells. This paper is devoted to the evaluation of the gene delivery ability of new synthesized gemini bis-pyridinium surfactants with six methylene spacers, both hydrogenated and fluorinated, in comparison with compounds with spacers of different lengths, previously studied. Results from MTT proliferation assay, electrophoresis mobility shift assay (EMSA), transient transfection assay tests and atomic force microscopy (AFM) imaging confirm that pyridinium gemini surfactants could be a valuable tool for gene delivery purposes, but their performance is highly dependent on the spacer length and strictly related to their structure in solution. All the fluorinated compounds are unable to transfect RD-4 cells, if used alone, but they are all able to deliver a plasmid carrying an enhanced green fluorescent protein (EGFP) expression cassette, when co-formulated with 1,2-dioleyl-sn-glycero-3-phosphoethanolamine (DOPE) in a 1:2 ratio. The fluorinated compounds with spacers formed by six (FGP6) and eight carbon atoms (FGP8) give rise to a very interesting gene delivery activity, greater to that of the commercial reagent, when formulated with DOPE. The hydrogenated compound GP16_6 is unable to sufficiently compact the DNA, as shown by AFM images.


Subject(s)
DNA/genetics , Gene Transfer Techniques , Methane/chemistry , Pyridinium Compounds/chemistry , Surface-Active Agents/chemistry , Transfection/methods , A549 Cells , Cell Survival , DNA/chemistry , DNA/metabolism , Genetic Therapy/methods , Halogenation , Humans , Hydrogenation , Methane/metabolism , Microscopy, Atomic Force , Molecular Structure , Plasmids/chemistry , Plasmids/genetics , Plasmids/metabolism , Pyridinium Compounds/metabolism , Reproducibility of Results , Surface-Active Agents/metabolism
9.
Sci Adv ; 8(8): eabi6110, 2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1714330

ABSTRACT

The spread of SARS-CoV-2 and ongoing COVID-19 pandemic underscores the need for new treatments. Here we report that cannabidiol (CBD) inhibits infection of SARS-CoV-2 in cells and mice. CBD and its metabolite 7-OH-CBD, but not THC or other congeneric cannabinoids tested, potently block SARS-CoV-2 replication in lung epithelial cells. CBD acts after viral entry, inhibiting viral gene expression and reversing many effects of SARS-CoV-2 on host gene transcription. CBD inhibits SARS-CoV-2 replication in part by up-regulating the host IRE1α RNase endoplasmic reticulum (ER) stress response and interferon signaling pathways. In matched groups of human patients from the National COVID Cohort Collaborative, CBD (100 mg/ml oral solution per medical records) had a significant negative association with positive SARS-CoV-2 tests. This study highlights CBD as a potential preventative agent for early-stage SARS-CoV-2 infection and merits future clinical trials. We caution against use of non-medical formulations including edibles, inhalants or topicals as a preventative or treatment therapy at the present time.


Subject(s)
Antiviral Agents/pharmacology , Cannabidiol/pharmacology , Host-Pathogen Interactions/drug effects , Immunity, Innate/drug effects , SARS-CoV-2/drug effects , A549 Cells , Animals , Antiviral Agents/chemistry , COVID-19/drug therapy , COVID-19/virology , Cannabidiol/chemistry , Cannabidiol/metabolism , Chlorocebus aethiops , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/genetics , Endoribonucleases/metabolism , Epithelial Cells/virology , Female , Gene Expression Regulation, Viral/drug effects , Host-Pathogen Interactions/physiology , Humans , Interferons/metabolism , Mice , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , SARS-CoV-2/physiology , Vero Cells , Virus Internalization/drug effects , Virus Replication/drug effects
10.
J Biol Chem ; 298(2): 101584, 2022 02.
Article in English | MEDLINE | ID: covidwho-1699145

ABSTRACT

With the outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), coronaviruses have begun to attract great attention across the world. Of the known human coronaviruses, however, Middle East respiratory syndrome coronavirus (MERS-CoV) is the most lethal. Coronavirus proteins can be divided into three groups: nonstructural proteins, structural proteins, and accessory proteins. While the number of each of these proteins varies greatly among different coronaviruses, accessory proteins are most closely related to the pathogenicity of the virus. We found for the first time that the ORF3 accessory protein of MERS-CoV, which closely resembles the ORF3a proteins of severe acute respiratory syndrome coronavirus and SARS-CoV-2, has the ability to induce apoptosis in cells in a dose-dependent manner. Through bioinformatics analysis and validation, we revealed that ORF3 is an unstable protein and has a shorter half-life in cells compared to that of severe acute respiratory syndrome coronavirus and SARS-CoV-2 ORF3a proteins. After screening, we identified a host E3 ligase, HUWE1, that specifically induces MERS-CoV ORF3 protein ubiquitination and degradation through the ubiquitin-proteasome system. This results in the diminished ability of ORF3 to induce apoptosis, which might partially explain the lower spread of MERS-CoV compared to other coronaviruses. In summary, this study reveals a pathological function of MERS-CoV ORF3 protein and identifies a potential host antiviral protein, HUWE1, with an ability to antagonize MERS-CoV pathogenesis by inducing ORF3 degradation, thus enriching our knowledge of the pathogenesis of MERS-CoV and suggesting new targets and strategies for clinical development of drugs for MERS-CoV treatment.


Subject(s)
Apoptosis , Coronavirus Infections/metabolism , Middle East Respiratory Syndrome Coronavirus/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Viral Nonstructural Proteins/metabolism , A549 Cells , Cell Line , Computational Biology , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Epithelial Cells/physiology , Epithelial Cells/virology , HEK293 Cells , Host-Pathogen Interactions , Humans
11.
Nat Commun ; 13(1): 719, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1692616

ABSTRACT

There is an urgent need for potent and selective antivirals against SARS-CoV-2. Pfizer developed PF-07321332 (PF-332), a potent inhibitor of the viral main protease (Mpro, 3CLpro) that can be dosed orally and that is in clinical development. We here report that PF-332 exerts equipotent in vitro activity against the four SARS-CoV-2 variants of concerns (VoC) and that it can completely arrest replication of the alpha variant in primary human airway epithelial cells grown at the air-liquid interface. Treatment of Syrian Golden hamsters with PF-332 (250 mg/kg, twice daily) completely protected the animals against intranasal infection with the beta (B.1.351) and delta (B.1.617.2) SARS-CoV-2 variants. Moreover, treatment of SARS-CoV-2 (B.1.617.2) infected animals with PF-332 completely prevented transmission to untreated co-housed sentinels.


Subject(s)
COVID-19/drug therapy , Disease Models, Animal , Lactams/administration & dosage , Leucine/administration & dosage , Nitriles/administration & dosage , Proline/administration & dosage , SARS-CoV-2/drug effects , Viral Protease Inhibitors/administration & dosage , A549 Cells , Administration, Oral , Animals , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Cricetinae , Humans , Lactams/pharmacokinetics , Leucine/pharmacokinetics , Mesocricetus , Nitriles/pharmacokinetics , Proline/pharmacokinetics , Respiratory Mucosa/drug effects , Respiratory Mucosa/virology , SARS-CoV-2/enzymology , SARS-CoV-2/physiology , Vero Cells , Viral Protease Inhibitors/pharmacokinetics , Virus Replication/drug effects
12.
J Virol ; 95(24): e0139921, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1691426

ABSTRACT

Targeting host factors is a promising strategy to develop broad-spectrum antiviral drugs. Drugs targeting anti-apoptotic Bcl-2 family proteins that were originally developed as tumor suppressors have been reported to inhibit multiplication of different types of viruses. However, the mechanisms whereby Bcl-2 inhibitors exert their antiviral activity remain poorly understood. In this study, we have investigated the mechanisms by which obatoclax (OLX) and ABT-737 Bcl-2 inhibitors exhibited a potent antiviral activity against the mammarenavirus lymphocytic choriomeningitis virus (LCMV). OLX and ABT-737 potent anti-LCMV activity was not associated with their proapoptotic properties but rather with their ability to induce cell arrest at the G0/G1 phase. OLX- and ABT-737-mediated inhibition of Bcl-2 correlated with reduced expression levels of thymidine kinase 1 (TK1), cyclin A2 (CCNA2), and cyclin B1 (CCNB1) cell cycle regulators. In addition, small interfering RNA (siRNA)-mediated knockdown of TK1, CCNA2, and CCNB1 resulted in reduced levels of LCMV multiplication. The antiviral activity exerted by Bcl-2 inhibitors correlated with reduced levels of viral RNA synthesis at early times of infection. Importantly, ABT-737 exhibited moderate efficacy in a mouse model of LCMV infection, and Bcl-2 inhibitors displayed broad-spectrum antiviral activities against different mammarenaviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our results suggest that Bcl-2 inhibitors, actively being explored as anticancer therapeutics, might be repositioned as broad-spectrum antivirals. IMPORTANCE Antiapoptotic Bcl-2 inhibitors have been shown to exert potent antiviral activities against various types of viruses via mechanisms that are currently poorly understood. This study has revealed that Bcl-2 inhibitors' mediation of cell cycle arrest at the G0/G1 phase, rather than their proapoptotic activity, plays a critical role in blocking mammarenavirus multiplication in cultured cells. In addition, we show that Bcl-2 inhibitor ABT-737 exhibited moderate antimammarenavirus activity in vivo and that Bcl-2 inhibitors displayed broad-spectrum antiviral activities against different mammarenaviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our results suggest that Bcl-2 inhibitors, actively being explored as anticancer therapeutics, might be repositioned as broad-spectrum antivirals.


Subject(s)
Apoptosis , Arenaviridae/drug effects , COVID-19/drug therapy , Proto-Oncogene Proteins c-bcl-2/metabolism , A549 Cells , Animals , Antiviral Agents/pharmacology , Apoptosis Regulatory Proteins/pharmacology , Biphenyl Compounds/pharmacology , COVID-19/virology , Cell Cycle , Cell Cycle Checkpoints/drug effects , Cells, Cultured/drug effects , Cells, Cultured/virology , Chlorocebus aethiops , Cyclin A2/biosynthesis , Cyclin B1/biosynthesis , G1 Phase , Humans , Indoles/pharmacology , Mice , Mice, Inbred C57BL , Nitrophenols/pharmacology , Piperazines/pharmacology , Pyrroles/pharmacology , Resting Phase, Cell Cycle , SARS-CoV-2 , Sulfonamides/pharmacology , Thymidine Kinase/biosynthesis , Vero Cells
13.
PLoS Pathog ; 18(2): e1010343, 2022 02.
Article in English | MEDLINE | ID: covidwho-1690680

ABSTRACT

The continuous emergence of severe acute respiratory coronavirus 2 (SARS-CoV-2) variants and the increasing number of breakthrough infection cases among vaccinated people support the urgent need for research and development of antiviral drugs. Viral entry is an intriguing target for antiviral drug development. We found that diltiazem, a blocker of the L-type calcium channel Cav1.2 pore-forming subunit (Cav1.2 α1c) and an FDA-approved drug, inhibits the binding and internalization of SARS-CoV-2, and decreases SARS-CoV-2 infection in cells and mouse lung. Cav1.2 α1c interacts with SARS-CoV-2 spike protein and ACE2, and affects the attachment and internalization of SARS-CoV-2. Our finding suggests that diltiazem has potential as a drug against SARS-CoV-2 infection and that Cav1.2 α1c is a promising target for antiviral drug development for COVID-19.


Subject(s)
COVID-19 , Diltiazem/pharmacology , Lung/drug effects , SARS-CoV-2/drug effects , A549 Cells , Animals , COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Diltiazem/therapeutic use , Disease Models, Animal , Female , HEK293 Cells , HeLa Cells , Humans , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , SARS-CoV-2/physiology , Vero Cells , Virus Attachment/drug effects , Virus Internalization/drug effects
14.
Nat Commun ; 13(1): 868, 2022 02 14.
Article in English | MEDLINE | ID: covidwho-1684025

ABSTRACT

SARS-CoV-2 infection is a major global public health concern with incompletely understood pathogenesis. The SARS-CoV-2 spike (S) glycoprotein comprises a highly conserved free fatty acid binding pocket (FABP) with unknown function and evolutionary selection advantage1,2. Deciphering FABP impact on COVID-19 progression is challenged by the heterogenous nature and large molecular variability of live virus. Here we create synthetic minimal virions (MiniVs) of wild-type and mutant SARS-CoV-2 with precise molecular composition and programmable complexity by bottom-up assembly. MiniV-based systematic assessment of S free fatty acid (FFA) binding reveals that FABP functions as an allosteric regulatory site enabling adaptation of SARS-CoV-2 immunogenicity to inflammation states via binding of pro-inflammatory FFAs. This is achieved by regulation of the S open-to-close equilibrium and the exposure of both, the receptor binding domain (RBD) and the SARS-CoV-2 RGD motif that is responsible for integrin co-receptor engagement. We find that the FDA-approved drugs vitamin K and dexamethasone modulate S-based cell binding in an FABP-like manner. In inflammatory FFA environments, neutralizing immunoglobulins from human convalescent COVID-19 donors lose neutralization activity. Empowered by our MiniV technology, we suggest a conserved mechanism by which SARS-CoV-2 dynamically couples its immunogenicity to the host immune response.


Subject(s)
COVID-19/immunology , Fatty Acids/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Virion/immunology , A549 Cells , Allosteric Site/genetics , Amino Acid Sequence , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites/genetics , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Fatty Acid-Binding Proteins/immunology , Fatty Acid-Binding Proteins/metabolism , Fatty Acids/metabolism , Humans , MCF-7 Cells , Microscopy, Confocal/methods , Protein Binding , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virion/metabolism , Virion/ultrastructure
15.
Cells ; 11(3)2022 01 30.
Article in English | MEDLINE | ID: covidwho-1667057

ABSTRACT

The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, as is research on the molecular mechanisms underlying cellular infection by coronaviruses, with the hope of developing therapeutic agents against this pandemic. Other important respiratory viruses such as 2009 pandemic H1N1 and H7N9 avian influenza virus (AIV), influenza A viruses, are also responsible for a possible outbreak due to their respiratory susceptibility. However, the interaction of these viruses with host cells and the regulation of post-transcriptional genes remains unclear. In this study, we detected and analyzed the comparative transcriptome profiling of SARS-CoV-2, panH1N1 (A/California/07/2009), and H7N9 (A/Shanghai/1/2013) infected cells. The results showed that the commonly upregulated genes among the three groups were mainly involved in autophagy, pertussis, and tuberculosis, which indicated that autophagy plays an important role in viral pathogenicity. There are three groups of commonly downregulated genes involved in metabolic pathways. Notably, unlike panH1N1 and H7N9, SARS-CoV-2 infection can inhibit the m-TOR pathway and activate the p53 signaling pathway, which may be responsible for unique autophagy induction and cell apoptosis. Particularly, upregulated expression of IRF1 was found in SARS-CoV-2, panH1N1, and H7N9 infection. Further analysis showed SARS-CoV-2, panH1N1, and H7N9 infection-induced upregulation of lncRNA-34087.27 could serve as a competitive endogenous RNA to stabilize IRF1 mRNA by competitively binding with miR-302b-3p. This study provides new insights into the molecular mechanisms of influenza A virus and SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , Immunity/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , RNA/immunology , Transcriptome/immunology , A549 Cells , Animals , COVID-19/genetics , COVID-19/virology , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunity/genetics , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H7N9 Subtype/physiology , Influenza, Human/genetics , Influenza, Human/virology , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/immunology , Interferon Regulatory Factor-1/metabolism , MicroRNAs/genetics , MicroRNAs/immunology , MicroRNAs/metabolism , Pandemics/prevention & control , RNA/genetics , RNA/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/immunology , RNA, Messenger/metabolism , RNA-Seq/methods , SARS-CoV-2/physiology , Signal Transduction/genetics , Signal Transduction/immunology , Transcriptome/genetics
16.
Drug Dev Res ; 83(4): 961-966, 2022 06.
Article in English | MEDLINE | ID: covidwho-1661606

ABSTRACT

Epidemiologic studies suggest slightly higher risk of severe Covid-19 symptoms and fatalities following SARS-CoV-2 infection in men compared with women from similar age groups. This bias was suggested to reflect differences in the male and female immune system regulation, driven by different sex hormone levels in men and women, in particular, higher plasma estradiol in women. SARS-CoV-2 infects respiratory tract epithelial cells by binding to their cell membrane ACE2, followed by priming for cell entry by the host cell membrane serine protease TMPRSS2. The cell protease FURIN facilitates cell exit of mature SARS-CoV-2 virions. Our study examined the effects of in vitro treatment of A549 human lung epithelial cells with 17-ß-estradiol on mRNA expression of genes coding for these proteins. Treatment of A549 human lung epithelial cells with 17-ß-estradiol reduced the cellular mRNA levels of ACE2 and TMPRSS2 mRNA, while not affecting FURIN expression. Our findings suggest that 17-ß-estradiol may reduce SARS-CoV-2 infection of lung epithelial cells, which may in part explain the reduced incidence of severe Covid-19 and fatalities among women compared with men of similar age. Studies into the molecular pathways by which 17-ß-estradiol reduces ACE2 and TMPRSS2 mRNA expression in lung epithelial cells are needed for assessing its potential protective value against severe Covid-19.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Estradiol , Serine Endopeptidases , A549 Cells , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Estradiol/pharmacology , Female , Furin/metabolism , Humans , Lung/metabolism , Male , RNA, Messenger/metabolism , SARS-CoV-2 , Serine Endopeptidases/metabolism
17.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: covidwho-1655773

ABSTRACT

SARS-CoV-2 entry into host cells is a crucial step for virus tropism, transmission, and pathogenesis. Angiotensin-converting enzyme 2 (ACE2) has been identified as the primary entry receptor for SARS-CoV-2; however, the possible involvement of other cellular components in the viral entry has not yet been fully elucidated. Here we describe the identification of vimentin (VIM), an intermediate filament protein widely expressed in cells of mesenchymal origin, as an important attachment factor for SARS-CoV-2 on human endothelial cells. Using liquid chromatography-tandem mass spectrometry, we identified VIM as a protein that binds to the SARS-CoV-2 spike (S) protein. We showed that the S-protein receptor binding domain (RBD) is sufficient for S-protein interaction with VIM. Further analysis revealed that extracellular VIM binds to SARS-CoV-2 S-protein and facilitates SARS-CoV-2 infection, as determined by entry assays performed with pseudotyped viruses expressing S and with infectious SARS-CoV-2. Coexpression of VIM with ACE2 increased SARS-CoV-2 entry in HEK-293 cells, and shRNA-mediated knockdown of VIM significantly reduced SARS-CoV-2 infection of human endothelial cells. Moreover, incubation of A549 cells expressing ACE2 with purified VIM increased pseudotyped SARS-CoV-2-S entry. CR3022 antibody, which recognizes a distinct epitope on SARS-CoV-2-S-RBD without interfering with the binding of the spike with ACE2, inhibited the binding of VIM with CoV-2 S-RBD, and neutralized viral entry in human endothelial cells, suggesting a key role for VIM in SARS-CoV-2 infection of endothelial cells. This work provides insight into the pathogenesis of COVID-19 linked to the vascular system, with implications for the development of therapeutics and vaccines.


Subject(s)
Endothelial Cells/virology , Extracellular Space/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Vimentin/metabolism , Virus Internalization , A549 Cells , Angiotensin-Converting Enzyme 2/metabolism , Coculture Techniques , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Endothelium, Vascular/virology , HEK293 Cells , Humans , Protein Binding
18.
Sci Rep ; 12(1): 1329, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1655620

ABSTRACT

The SARS-CoV-2 pandemic has challenged humankind's ability to quickly determine the cascade of health effects caused by a novel infection. Even with the unprecedented speed at which vaccines were developed and introduced into society, identifying therapeutic interventions and drug targets for patients infected with the virus remains important as new strains of the virus evolve, or future coronaviruses may emerge that are resistant to current vaccines. The application of transcriptomic RNA sequencing of infected samples may shed new light on the pathways involved in viral mechanisms and host responses. We describe the application of the previously developed "dual RNA-seq" approach to investigate, for the first time, the co-regulation between the human and SARS-CoV-2 transcriptomes. Together with differential expression analysis, we describe the tissue specificity of SARS-CoV-2 expression, an inferred lipopolysaccharide response, and co-regulation of CXCL's, SPRR's, S100's with SARS-CoV-2 expression. Lipopolysaccharide response pathways in particular offer promise for future therapeutic research and the prospect of subgrouping patients based on chemokine expression that may help explain the vastly different reactions patients have to infection. Taken together these findings highlight unappreciated SARS-CoV-2 expression signatures and emphasize new considerations and mechanisms for SARS-CoV-2 therapeutic intervention.


Subject(s)
COVID-19 , Gene Expression Regulation, Viral , RNA-Seq , SARS-CoV-2 , Transcriptome , A549 Cells , COVID-19/genetics , COVID-19/metabolism , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
19.
Nat Commun ; 13(1): 405, 2022 01 20.
Article in English | MEDLINE | ID: covidwho-1631967

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the pandemic of the coronavirus induced disease 2019 (COVID-19) with evolving variants of concern. It remains urgent to identify novel approaches against broad strains of SARS-CoV-2, which infect host cells via the entry receptor angiotensin-converting enzyme 2 (ACE2). Herein, we report an increase in circulating extracellular vesicles (EVs) that express ACE2 (evACE2) in plasma of COVID-19 patients, which levels are associated with severe pathogenesis. Importantly, evACE2 isolated from human plasma or cells neutralizes SARS-CoV-2 infection by competing with cellular ACE2. Compared to vesicle-free recombinant human ACE2 (rhACE2), evACE2 shows a 135-fold higher potency in blocking the binding of the viral spike protein RBD, and a 60- to 80-fold higher efficacy in preventing infections by both pseudotyped and authentic SARS-CoV-2. Consistently, evACE2 protects the hACE2 transgenic mice from SARS-CoV-2-induced lung injury and mortality. Furthermore, evACE2 inhibits the infection of SARS-CoV-2 variants (α, ß, and δ) with equal or higher potency than for the wildtype strain, supporting a broad-spectrum antiviral mechanism of evACE2 for therapeutic development to block the infection of existing and future coronaviruses that use the ACE2 receptor.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19/immunology , Extracellular Vesicles/immunology , SARS-CoV-2/immunology , A549 Cells , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/blood , COVID-19/epidemiology , Chlorocebus aethiops , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , HEK293 Cells , HeLa Cells , Humans , Mice, Transgenic , Neutralization Tests/methods , Pandemics/prevention & control , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Survival Analysis , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL