Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
J Colloid Interface Sci ; 586: 673-682, 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1065294


Paracetamol is the most commonly used antipyretic and analgesic drug in the world. The key challenge in paracetamol therapy is associated with the frequency of the dosing. Depending on the gastric filling within 10-20 min paracetamol is released and rapidly absorbed from the gastrointestinal tract. Therefore, it must be taken three or four times a day. To address the dose challenge it is desirable that the paracetamol release profile follows the zero-order kinetic model (constant rate of drug release per unit time). This goal can be achieved by using a suitable porous carrier system. Herein, non-toxic wrinkled mesoporous carbons with unique morphology were synthesized via the hard template method as new carriers for paracetamol. These particles can precisely modulate the release of paracetamol over 24 h in a simulated gastric fluid according to the zero-order kinetic model completely eliminating the initial burst release. Overall, these systems could significantly enhance the bioavailability of paracetamol and prolong its therapeutic effect in numerous diseases such as cold, flu, COVID-19, and severe pain.

Acetaminophen , COVID-19/drug therapy , Carbon/chemistry , Drug Carriers , Pain/drug therapy , SARS-CoV-2 , Acetaminophen/chemistry , Acetaminophen/pharmacokinetics , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Humans
Clin Pharmacol Ther ; 108(2): 242-247, 2020 08.
Article in English | MEDLINE | ID: covidwho-30729


An outbreak of 2019-nCoV infection has spread across the world. No specific antiviral drugs have been approved for the treatment of COVID-2019. In addition to the recommended antiviral drugs, such as interferon-ɑ, lopinavir/ritonavir, ribavirin, and chloroquine phosphate, some clinical trials focusing on virus RNA-dependent RNA polymerase (RdRp) inhibitors have been registered and initiated. Favipiravir, a purine nucleic acid analog and potent RdRp inhibitor approved for use in influenza, is also considered in several clinical trials. Herein, we summarized the pharmacokinetic characteristics of favipiravir and possible drug-drug interactions from the view of drug metabolism. We hope this will be helpful for the design of clinical trials for favipiravir in COVID-2019, as data regarding in vitro virus inhibition and efficacy in preclinical animal studies are still not available.

Amides/pharmacokinetics , Antiviral Agents/pharmacokinetics , Pyrazines/pharmacokinetics , Acetaminophen/pharmacokinetics , Amides/administration & dosage , Amides/blood , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/blood , COVID-19/drug therapy , Clinical Trials as Topic , Coronavirus Infections/drug therapy , Drug Interactions , Humans , Pyrazines/administration & dosage , Pyrazines/blood