Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Antimicrob Resist Infect Control ; 11(1): 12, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1643184

ABSTRACT

BACKGROUND: Despite the adoption of strict infection prevention and control measures, many hospitals have reported outbreaks of multidrug-resistant organisms (MDRO) during the Coronavirus 2019 (COVID-19) pandemic. Following an outbreak of carbapenem-resistant Acinetobacter baumannii (CRAB) in our institution, we sought to systematically analyse characteristics of MDRO outbreaks in times of COVID-19, focussing on contributing factors and specific challenges in controlling these outbreaks. METHODS: We describe results of our own CRAB outbreak investigation and performed a systematic literature review for MDRO (including Candida auris) outbreaks which occurred during the COVID-19 pandemic (between December 2019 and March 2021). Search terms were related to pathogens/resistance mechanisms AND COVID-19. We summarized outbreak characteristics in a narrative synthesis and contrasted contributing factors with implemented control measures. RESULTS: The CRAB outbreak occurred in our intensive care units between September and December 2020 and comprised 10 patients (thereof seven with COVID-19) within two distinct genetic clusters (both ST2 carrying OXA-23). Both clusters presumably originated from COVID-19 patients transferred from the Balkans. Including our outbreak, we identified 17 reports, mostly caused by Candida auris (n = 6) or CRAB (n = 5), with an overall patient mortality of 35% (68/193). All outbreaks involved intensive care settings. Non-adherence to personal protective equipment (PPE) or hand hygiene (n = 11), PPE shortage (n = 8) and high antibiotic use (n = 8) were most commonly reported as contributing factors, followed by environmental contamination (n = 7), prolonged critical illness (n = 7) and lack of trained HCW (n = 7). Implemented measures mainly focussed on PPE/hand hygiene audits (n = 9), environmental cleaning/disinfection (n = 9) and enhanced patient screening (n = 8). Comparing potentially modifiable risk factors and control measures, we found the largest discrepancies in the areas of PPE shortage (risk factor in 8 studies, addressed in 2 studies) and patient overcrowding (risk factor in 5 studies, addressed in 0 studies). CONCLUSIONS: Reported MDRO outbreaks during the COVID-19 pandemic were most often caused by CRAB (including our outbreak) and C. auris. Inadequate PPE/hand hygiene adherence, PPE shortage, and high antibiotic use were the most commonly reported potentially modifiable factors contributing to the outbreaks. These findings should be considered for the prevention of MDRO outbreaks during future COVID-19 waves.


Subject(s)
Acinetobacter Infections/prevention & control , Acinetobacter baumannii , COVID-19/complications , COVID-19/epidemiology , Candidiasis/prevention & control , Pandemics , SARS-CoV-2 , Acinetobacter Infections/complications , Acinetobacter baumannii/drug effects , Aged , Candidiasis/complications , Carbapenems/pharmacology , Cross Infection/prevention & control , Disease Outbreaks/prevention & control , Drug Resistance, Multiple, Bacterial , Female , Humans , Infection Control/methods , Male , Middle Aged , Retrospective Studies , Switzerland/epidemiology
2.
Int J Mol Sci ; 22(22)2021 Nov 20.
Article in English | MEDLINE | ID: covidwho-1534089

ABSTRACT

Carbapenem-resistant A. baumannii (CRAB) infection can cause acute host reactions that lead to high-fatality sepsis, making it important to develop new therapeutic options. Previously, we developed a short 9-meric peptide, Pro9-3D, with significant antibacterial and cytotoxic effects. In this study, we attempted to produce safer peptide antibiotics against CRAB by reversing the parent sequence to generate R-Pro9-3 and R-Pro9-3D. Among the tested peptides, R-Pro9-3D had the most rapid and effective antibacterial activity against Gram-negative bacteria, particularly clinical CRAB isolates. Analyses of antimicrobial mechanisms based on lipopolysaccharide (LPS)-neutralization, LPS binding, and membrane depolarization, as well as SEM ultrastructural investigations, revealed that R-Pro9-3D binds strongly to LPS and impairs the membrane integrity of CRAB by effectively permeabilizing its outer membrane. R-Pro9-3D was also less cytotoxic and had better proteolytic stability than Pro9-3D and killed biofilm forming CRAB. As an LPS-neutralizing peptide, R-Pro9-3D effectively reduced LPS-induced pro-inflammatory cytokine levels in RAW 264.7 cells. The antiseptic abilities of R-Pro9-3D were also investigated using a mouse model of CRAB-induced sepsis, which revealed that R-Pro9-3D reduced multiple organ damage and attenuated systemic infection by acting as an antibacterial and immunosuppressive agent. Thus, R-Pro9-3D displays potential as a novel antiseptic peptide for treating Gram-negative CRAB infections.


Subject(s)
Acinetobacter Infections/drug therapy , Acinetobacter baumannii/drug effects , Drug Resistance, Bacterial/genetics , Peptides/pharmacology , Acinetobacter Infections/genetics , Acinetobacter Infections/microbiology , Acinetobacter baumannii/pathogenicity , Anti-Infective Agents, Local/pharmacology , Biofilms/drug effects , Carbapenems/adverse effects , Carbapenems/pharmacology , Humans , Microbial Sensitivity Tests
3.
Microbiol Spectr ; 9(3): e0028321, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1501550

ABSTRACT

The Infectious Disease Surveillance of Pediatrics (ISPED) program was established in 2015 to monitor and analyze the trends of bacterial epidemiology and antimicrobial resistance (AMR) in children. Clinical bacterial isolates were collected from 11 tertiary care children's hospitals in China in 2016 to 2020. Antimicrobial susceptibility testing was carried out using the Kirby-Bauer method or automated systems, with interpretation according to the Clinical and Laboratory Standards Institute 2019 breakpoints. A total of 288,377 isolates were collected, and the top 10 predominant bacteria were Escherichia coli, Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, Klebsiella pneumoniae, Moraxella catarrhalis, Streptococcus pyogenes, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Acinetobacter baumannii. In 2020, the coronavirus disease 2019 (COVID-19) pandemic year, we observed a significant reduction in the proportion of respiratory tract samples (from 56.9% to 44.0%). A comparable reduction was also seen in the primary bacteria mainly isolated from respiratory tract samples, including S. pneumoniae, H. influenzae, and S. pyogenes. Multidrug-resistant organisms (MDROs) in children were commonly observed and presented higher rates of drug resistance than sensitive strains. The proportions of carbapenem-resistant K. pneumoniae (CRKP), carbapenem-resistant A. baumannii (CRAB), carbapenem-resistant P. aeruginosa (CRPA), and methicillin-resistant S. aureus (MRSA) strains were 19.7%, 46.4%%, 12.8%, and 35.0%, respectively. The proportions of CRKP, CRAB, and CRPA strains all showed decreasing trends between 2015 and 2020. Carbapenem-resistant Enterobacteriaceae (CRE) and CRPA gradually decreased with age, while CRAB showed the opposite trend with age. Both CRE and CRPA pose potential threats to neonates. MDROs show very high levels of AMR and have become an urgent threat to children, suggesting that effective monitoring of AMR and antimicrobial stewardship among children in China are required. IMPORTANCE AMR, especially that involving multidrug-resistant organisms (MDROs), is recognized as a global threat to human health; AMR renders infections increasingly difficult to treat, constituting an enormous economic burden and producing tremendous negative impacts on patient morbidity and mortality rates. There are many surveillance programs in the world to address AMR profiles and MDRO prevalence in humans. However, published studies evaluating the overall AMR rates or MDRO distributions in children are very limited or are of mixed quality. In this study, we showed the bacterial epidemiology and resistance profiles of primary pathogens in Chinese children from 2016 to 2020 for the first time, analyzed MDRO distributions with time and with age, and described MDROs' potential threats to children, especially low-immunity neonates. Our study will be very useful to guide antiinfection therapy in Chinese children, as well as worldwide pediatric patients.


Subject(s)
Bacteria/classification , Communicable Diseases/epidemiology , Communicable Diseases/microbiology , Drug Resistance, Bacterial , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/isolation & purification , COVID-19/epidemiology , Child , China/epidemiology , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Humans , Klebsiella pneumoniae/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Moraxella catarrhalis , Pseudomonas aeruginosa/drug effects , SARS-CoV-2 , Staphylococcus aureus/drug effects , Staphylococcus epidermidis , Streptococcus pneumoniae , Streptococcus pyogenes
4.
Microb Drug Resist ; 27(9): 1167-1175, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1406451

ABSTRACT

Background: The aim of this study was to assess the drivers of multidrug-resistant (MDR) bacterial infection development in coronavirus disease 2019 (COVID-19) and its impact on patient outcome. Methods: Retrospective analysis on data from 32 consecutive patients with COVID-19, admitted to our intensive care unit (ICU) from March to May 2020. Outcomes considered were MDR infection and ICU mortality. Results: Fifty percent of patients developed an MDR infection during ICU stay after a median time of 8 [4-11] days. Most common MDR pathogens were carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii, causing bloodstream infections and pneumonia. MDR infections were linked to a higher length of ICU stay (p = 0.002), steroid therapy (p = 0.011), and associated with a lower ICU mortality (odds ratio: 0.439, 95% confidence interval: 0.251-0.763; p < 0.001). Low-dose aspirin intake was associated with both MDR infection (p = 0.043) and survival (p = 0.015). Among MDR patients, mortality was related with piperacillin-tazobactam use (p = 0.035) and an earlier onset of MDR infection (p = 0.042). Conclusions: MDR infections were a common complication in critically ill COVID-19 patients at our center. MDR risk was higher among those dwelling longer in the ICU and receiving steroids. However, MDR infections were not associated with a worse outcome.


Subject(s)
Acinetobacter Infections/mortality , COVID-19/mortality , Drug Resistance, Multiple, Bacterial , Klebsiella Infections/mortality , Opportunistic Infections/mortality , Pneumonia/mortality , SARS-CoV-2/pathogenicity , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Acinetobacter Infections/virology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/growth & development , Acinetobacter baumannii/pathogenicity , Adult , Aged , Anti-Bacterial Agents/therapeutic use , Aspirin/therapeutic use , COVID-19/drug therapy , COVID-19/microbiology , COVID-19/virology , Carbapenems/therapeutic use , Critical Illness , Female , Hospital Mortality , Humans , Intensive Care Units , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella Infections/virology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/growth & development , Klebsiella pneumoniae/pathogenicity , Length of Stay/statistics & numerical data , Male , Middle Aged , Opportunistic Infections/drug therapy , Opportunistic Infections/microbiology , Opportunistic Infections/virology , Piperacillin, Tazobactam Drug Combination/therapeutic use , Pneumonia/drug therapy , Pneumonia/microbiology , Pneumonia/virology , Retrospective Studies , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Steroids/therapeutic use , Survival Analysis , Treatment Outcome
5.
BMC Infect Dis ; 21(1): 927, 2021 Sep 08.
Article in English | MEDLINE | ID: covidwho-1403227

ABSTRACT

BACKGROUND: Carbapenem-resistant Acinetobacter baumannii (CRAB) is among the most concerning cause of healthcare-associated infections (HAI) due to its high level of antibiotic resistance and high mortality. In the era of the COVID-19 pandemic, the key priority of infection control committees is to contain the dissemination of antibiotic resistant Gram-negative bacteria. Here, we aimed to timely recognize the emergence of CRAB in COVID-19 cases admitted to the wards of a tertiary referral hospital and to identify the genetic relatedness of the isolates. METHODS: From 30 March to 30 May 2020, a total of 242 clinical samples from COVID-19 cases were screened for CRAB isolates using standard microbiologic and antibiotic susceptibility tests. The PCRs targeting oxa23, oxa24, oxa58, blaTEM and blaNDM-1 genes were performed. Two multiplex PCRs for identifying the global clones (GC) of A. baumannii were also performed. The sequence type of CRABs was determined using Institut Pasteur (IP) multilocus sequence typing (MLST) scheme. RESULTS: Eighteen CRAB isolates were recovered from COVID-19 patients with the mean age of 63.94 ± 13.8 years. All but 4 COVID-19 patients co-infected with CRAB were suffering from an underlying disease. Death was recorded as the outcome in ICUs for 9 (50%) COVID-19 patients co-infected with CRAB. The CRAB isolates belong to GC2 and ST2IP and carried the oxa23 carbapenem resistance gene. CONCLUSION: This study demonstrated the co-infection of CRAB isolates and SARS-CoV-2 in the patients admitted to different ICUs at a referral hospital in Tehran. The CRAB isolates were found to belong to ST2IP, share the oxa23 gene and to have caused several outbreaks in the wards admitting COVID-19 patients.


Subject(s)
Acinetobacter Infections , COVID-19 , Coinfection , Acinetobacter Infections/epidemiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Aged , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , COVID-19/epidemiology , COVID-19/microbiology , Carbapenems/pharmacology , Coinfection/epidemiology , Humans , Iran/epidemiology , Microbial Sensitivity Tests , Middle Aged , Multilocus Sequence Typing , Pandemics , Tertiary Care Centers , beta-Lactamases/genetics
6.
MMWR Morb Mortal Wkly Rep ; 69(48): 1827-1831, 2020 Dec 04.
Article in English | MEDLINE | ID: covidwho-1000679

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii (CRAB), an opportunistic pathogen primarily associated with hospital-acquired infections, is an urgent public health threat (1). In health care facilities, CRAB readily contaminates the patient care environment and health care providers' hands, survives for extended periods on dry surfaces, and can be spread by asymptomatically colonized persons; these factors make CRAB outbreaks in acute care hospitals difficult to control (2,3). On May 28, 2020, a New Jersey hospital (hospital A) reported a cluster of CRAB infections during a surge in patients hospitalized with coronavirus disease 2019 (COVID-19). Hospital A and the New Jersey Department of Health (NJDOH) conducted an investigation, and identified 34 patients with hospital-acquired multidrug-resistant CRAB infection or colonization during February-July 2020, including 21 (62%) who were admitted to two intensive care units (ICUs) dedicated to caring for COVID-19 patients. In late March, increasing COVID-19-related hospitalizations led to shortages in personnel, personal protective equipment (PPE), and medical equipment, resulting in changes to conventional infection prevention and control (IPC) practices. In late May, hospital A resumed normal operations, including standard IPC measures, as COVID-19 hospitalizations decreased, lessening the impact of personnel and supply chain shortages on hospital functions. CRAB cases subsequently returned to a pre-COVID-19 baseline of none to two cases monthly. The occurrence of this cluster underscores the potential for multidrug-resistant organisms (MDROs) to spread during events when standard hospital practices might be disrupted; conventional IPC strategies should be reinstated as soon as capacity and resources allow.


Subject(s)
Acinetobacter Infections/epidemiology , Acinetobacter Infections/microbiology , Acinetobacter baumannii/drug effects , Carbapenems/pharmacology , Cross Infection/epidemiology , Drug Resistance, Bacterial , COVID-19/epidemiology , COVID-19/therapy , Female , Hospitals , Humans , Male , Middle Aged , New Jersey/epidemiology , Patient Admission/statistics & numerical data
7.
BMC Infect Dis ; 20(1): 646, 2020 Sep 01.
Article in English | MEDLINE | ID: covidwho-740368

ABSTRACT

BACKGROUND: COVID-19 is known as a new viral infection. Viral-bacterial co-infections are one of the biggest medical concerns, resulting in increased mortality rates. To date, few studies have investigated bacterial superinfections in COVID-19 patients. Hence, we designed the current study on COVID-19 patients admitted to ICUs. METHODS: Nineteen patients admitted to our ICUs were enrolled in this study. To detect COVID-19, reverse transcription real-time polymerase chain reaction was performed. Endotracheal aspirate samples were also collected and cultured on different media to support the growth of the bacteria. After incubation, formed colonies on the media were identified using Gram staining and other biochemical tests. Antimicrobial susceptibility testing was carried out based on the CLSI recommendations. RESULTS: Of nineteen COVID-19 patients, 11 (58%) patients were male and 8 (42%) were female, with a mean age of ~ 67 years old. The average ICU length of stay was ~ 15 days and at the end of the study, 18 cases (95%) expired and only was 1 case (5%) discharged. In total, all patients were found positive for bacterial infections, including seventeen Acinetobacter baumannii (90%) and two Staphylococcus aureus (10%) strains. There was no difference in the bacteria species detected in any of the sampling points. Seventeen of 17 strains of Acinetobacter baumannii were resistant to the evaluated antibiotics. No metallo-beta-lactamases -producing Acinetobacter baumannii strain was found. One of the Staphylococcus aureus isolates was detected as methicillin-resistant Staphylococcus aureus and isolated from the patient who died, while another Staphylococcus aureus strain was susceptible to tested drugs and identified as methicillin-sensitive Staphylococcus aureus. CONCLUSIONS: Our findings emphasize the concern of superinfection in COVID-19 patients due to Acinetobacter baumannii and Staphylococcus aureus. Consequently, it is important to pay attention to bacterial co-infections in critical patients positive for COVID-19.


Subject(s)
Acinetobacter Infections/complications , Acinetobacter baumannii/isolation & purification , Betacoronavirus/physiology , Coinfection/epidemiology , Coronavirus Infections/complications , Pneumonia, Viral/complications , Staphylococcal Infections/complications , Staphylococcus aureus/isolation & purification , Acinetobacter Infections/epidemiology , Acinetobacter Infections/microbiology , Acinetobacter baumannii/drug effects , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/pharmacology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Diabetes Complications/epidemiology , Female , Heart Diseases/complications , Humans , Hypertension/complications , Intensive Care Units , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Respiratory System/microbiology , SARS-CoV-2 , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects
8.
IUBMB Life ; 72(10): 2097-2111, 2020 10.
Article in English | MEDLINE | ID: covidwho-696287

ABSTRACT

The pandemic coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has affected millions of people worldwide. To date, there are no proven effective therapies for this virus. Efforts made to develop antiviral strategies for the treatment of COVID-19 are underway. Respiratory viral infections, such as influenza, predispose patients to co-infections and these lead to increased disease severity and mortality. Numerous types of antibiotics such as azithromycin have been employed for the prevention and treatment of bacterial co-infection and secondary bacterial infections in patients with a viral respiratory infection (e.g., SARS-CoV-2). Although antibiotics do not directly affect SARS-CoV-2, viral respiratory infections often result in bacterial pneumonia. It is possible that some patients die from bacterial co-infection rather than virus itself. To date, a considerable number of bacterial strains have been resistant to various antibiotics such as azithromycin, and the overuse could render those or other antibiotics even less effective. Therefore, bacterial co-infection and secondary bacterial infection are considered critical risk factors for the severity and mortality rates of COVID-19. Also, the antibiotic-resistant as a result of overusing must be considered. In this review, we will summarize the bacterial co-infection and secondary bacterial infection in some featured respiratory viral infections, especially COVID-19.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , Bacterial Infections/epidemiology , COVID-19/epidemiology , Pandemics , Pneumonia, Bacterial/epidemiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/pathogenicity , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Bacterial Infections/virology , COVID-19/drug therapy , COVID-19/microbiology , COVID-19/virology , Coinfection , Haemophilus influenzae/drug effects , Haemophilus influenzae/pathogenicity , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/drug effects , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/pathogenicity , Legionella pneumophila/drug effects , Legionella pneumophila/pathogenicity , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/virology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Respiratory System/drug effects , Respiratory System/microbiology , Respiratory System/pathology , Respiratory System/virology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/pathogenicity , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/pathogenicity
9.
Am J Infect Control ; 48(9): 1037-1041, 2020 09.
Article in English | MEDLINE | ID: covidwho-634244

ABSTRACT

INTRODUCTION: One of the serious consequences of the SARS-CoV-2 pandemic is the shortage of protective equipment for health personnel. N95 masks are considered one of the essential protective equipment in the management of patients with COVID-19. The shortage of N95 masks implies potential health risks for health personnel and significant economic losses for the health institution. The objective of this work was to investigate the disinfection of N95 masks artificially contaminated with SARS-CoV-2 and ESKAPE bacteria by using hydrogen peroxide plasma. MATERIAL AND METHODS: We examined the disinfection capacity of hydrogen peroxide plasma against the SARS-CoV-2 and 2 members of the ESKAPE bacteria (Acinetobacter baumannii and Staphylococcus aureus) through a study of artificial contamination in situ of N95 masks. Amplification of specific genes by real-time reverse transcription polymerase chain reaction of SARS-CoV-2 and microbiological culture of ESKAPE bacteria was performed before and after the disinfection process. RESULTS: SARS-CoV-2 was not detected in all assays using 5 different concentrations of the virus, and A baumannii and S aureus were not cultivable with inoculums of 102 to 106 CFU after disinfection tests of N95 masks with hydrogen peroxide plasma. CONCLUSION: Disinfection of N95 masks by using the hydrogen peroxide plasma technology can be an alternative for their reuse in a shortage situation. Implications for the use of disinfection technologies of N95 masks and the safety of health personnel are discussed.


Subject(s)
Anti-Infective Agents, Local/administration & dosage , Betacoronavirus/drug effects , Coronavirus Infections/prevention & control , Disinfection/methods , Equipment Reuse , Hydrogen Peroxide/administration & dosage , Masks/microbiology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Acinetobacter baumannii/drug effects , COVID-19 , Humans , Respiratory Protective Devices/microbiology , SARS-CoV-2 , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL