Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Hosp Infect ; 116: 78-86, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1404776

ABSTRACT

AIM: To describe the nosocomial transmission of Air, multidrug-resistant, Acinetobacter baumannii, nosocomial, COVID-19 Acinetobacter baumannii (MRAB) in an open-cubicle neurology ward with low ceiling height, where MRAB isolates collected from air, commonly shared items, non-reachable high-level surfaces and patients were analysed epidemiologically and genetically by whole-genome sequencing. This is the first study to understand the genetic relatedness of air, environmental and clinical isolates of MRAB in the outbreak setting. FINDINGS: Of 11 highly care-dependent patients with 363 MRAB colonization days during COVID-19 pandemic, 10 (90.9%) and nine (81.8%) had cutaneous and gastrointestinal colonization, respectively. Of 160 environmental and air samples, 31 (19.4%) were MRAB-positive. The proportion of MRAB-contaminated commonly shared items was significantly lower in cohort than in non-cohort patient care (0/10, 0% vs 12/18, 66.7%; P<0.001). Air dispersal of MRAB was consistently detected during but not before diaper change in the cohort cubicle by 25-min air sampling (4/4,100% vs 0/4, 0%; P=0.029). The settle plate method revealed MRAB in two samples during diaper change. The proportion of MRAB-contaminated exhaust air grills was significantly higher when the cohort cubicle was occupied by six MRAB patients than when fewer than six patients were cared for in the cubicle (5/9, 55.6% vs 0/18, 0%; P=0.002). The proportion of MRAB-contaminated non-reachable high-level surfaces was also significantly higher when there were three or more MRAB patients in the cohort cubicle (8/31, 25.8% vs 0/24, 0%; P=0.016). Whole-genome sequencing revealed clonality of air, environment, and patients' isolates, suggestive of air dispersal of MRAB. CONCLUSIONS: Our findings support the view that patient cohorting in enclosed cubicles with partitions and a closed door is preferred if single rooms are not available.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , COVID-19 , Cross Infection , Acinetobacter Infections/drug therapy , Acinetobacter Infections/epidemiology , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cross Infection/drug therapy , Cross Infection/epidemiology , Drug Resistance, Multiple, Bacterial , Humans , Microbial Sensitivity Tests , Pandemics , SARS-CoV-2
2.
BMC Infect Dis ; 21(1): 927, 2021 Sep 08.
Article in English | MEDLINE | ID: covidwho-1403227

ABSTRACT

BACKGROUND: Carbapenem-resistant Acinetobacter baumannii (CRAB) is among the most concerning cause of healthcare-associated infections (HAI) due to its high level of antibiotic resistance and high mortality. In the era of the COVID-19 pandemic, the key priority of infection control committees is to contain the dissemination of antibiotic resistant Gram-negative bacteria. Here, we aimed to timely recognize the emergence of CRAB in COVID-19 cases admitted to the wards of a tertiary referral hospital and to identify the genetic relatedness of the isolates. METHODS: From 30 March to 30 May 2020, a total of 242 clinical samples from COVID-19 cases were screened for CRAB isolates using standard microbiologic and antibiotic susceptibility tests. The PCRs targeting oxa23, oxa24, oxa58, blaTEM and blaNDM-1 genes were performed. Two multiplex PCRs for identifying the global clones (GC) of A. baumannii were also performed. The sequence type of CRABs was determined using Institut Pasteur (IP) multilocus sequence typing (MLST) scheme. RESULTS: Eighteen CRAB isolates were recovered from COVID-19 patients with the mean age of 63.94 ± 13.8 years. All but 4 COVID-19 patients co-infected with CRAB were suffering from an underlying disease. Death was recorded as the outcome in ICUs for 9 (50%) COVID-19 patients co-infected with CRAB. The CRAB isolates belong to GC2 and ST2IP and carried the oxa23 carbapenem resistance gene. CONCLUSION: This study demonstrated the co-infection of CRAB isolates and SARS-CoV-2 in the patients admitted to different ICUs at a referral hospital in Tehran. The CRAB isolates were found to belong to ST2IP, share the oxa23 gene and to have caused several outbreaks in the wards admitting COVID-19 patients.


Subject(s)
Acinetobacter Infections , COVID-19 , Coinfection , Acinetobacter Infections/epidemiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Aged , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , COVID-19/epidemiology , COVID-19/microbiology , Carbapenems/pharmacology , Coinfection/epidemiology , Humans , Iran/epidemiology , Microbial Sensitivity Tests , Middle Aged , Multilocus Sequence Typing , Pandemics , Tertiary Care Centers , beta-Lactamases/genetics
3.
Am J Infect Control ; 49(6): 792-799, 2021 06.
Article in English | MEDLINE | ID: covidwho-1269213

ABSTRACT

BACKGROUND: Antibiotic-resistant Acinetobacter species are a growing public health threat, yet are not nationally notifiable, and most states do not mandate reporting. Additionally, there are no standardized methods to detect Acinetobacter species colonization. METHODS: An outbreak of carbapenem-resistant Acinetobacter baumannii (CRAB) was identified at a Utah ventilator unit in a skilled nursing facility. An investigation was conducted to identify transmission modes in order to control spread of CRAB. Culture-based methods were used to identify patient colonization and environmental contamination in the facility. RESULTS: Of the 47 patients screened, OXA-23-producing CRAB were detected in 10 patients (21%), with 7 patients (15%) having been transferred from out-of-state facilities. Of patients who screened positive, 60% did not exhibit any signs or symptoms of active infection by chart review. A total of 38 environmental samples were collected and CRAB was recovered from 37% of those samples. Whole genome sequencing analyses of patient and environmental isolates suggested repeated CRAB introduction into the facility and highlighted the role of shared equipment in transmission. CONCLUSIONS: The investigation demonstrated this ventilated skilled nursing facility was an important reservoir for CRAB in the community and highlights the need for improved surveillance, strengthened infection control and inter-facility communication within and across states.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Cross Infection , Acinetobacter Infections/drug therapy , Acinetobacter Infections/epidemiology , Acinetobacter Infections/prevention & control , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins , Carbapenems/pharmacology , Cross Infection/drug therapy , Cross Infection/epidemiology , Cross Infection/prevention & control , Disease Outbreaks , Humans , Infection Control , Microbial Sensitivity Tests , Skilled Nursing Facilities , Utah/epidemiology , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL