Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
Anal Chem ; 94(47): 16290-16298, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2119298

ABSTRACT

One of the serious complications of COVID-19 is acute kidney injury (AKI), leading to a decrease in kidney function and even death. The concentration of ammonia (NH3) in the exhaled breath (EB) of COVID-19 patients suffering from AKI symptoms will be significantly increased. In this work, the detection of breath NH3 was performed at gold interdigital electrodes modified with a soluble polypyrrole microparticle and silver nanoparticle film (Au-IDEs/S-PPyMPs/AgNPs) as a noninvasive chemiresistor gas sensor. The response behavior of unmodified and modified gas sensors toward NH3 and other interfering compounds was studied. The Au-IDEs/S-PPyMPs/AgNPs exhibited NH3 detection in the linear dynamic range of 1.00-19.23 ppm, with a limit of detection of 0.12 ppm. Finally, the fabricated gas sensor was used to monitor the NH3 concentration in the EB of COVID-19 patients suffering from AKI symptoms. For this purpose, the gas sensor was validated in 19 EB samples (seven COVID-19-positive patients, four COVID-19-negative patients, and eight post-COVID-19 patients). The gas sensor was directly exposed to the EB samples, followed by recording the changes in electrical resistance via a low-cost digital multimeter. The sensing mechanism was explained as the interaction between breath NH3 and sensing materials. The breath NH3 concentrations have a desirable correlation (R2 = 0.8463) with the estimated glomerular filtration rate (eGFR) values in COVID-19-positive patients. The fabricated gas sensor can distinguish COVID-19-positive patients suffering from AKI symptoms from COVID-19-negative patients and post-COVID-19 patients. The present work can pave the way for the development of a simple and efficient analytical approach for COVID-19 patients with AKI without the need for sample pretreatment.


Subject(s)
Acute Kidney Injury , COVID-19 , Metal Nanoparticles , Humans , Silver , Ammonia , Polymers , Breath Tests , Pyrroles , COVID-19/complications , COVID-19/diagnosis , Acute Kidney Injury/diagnosis
2.
Int J Clin Pract ; 2022: 1363994, 2022.
Article in English | MEDLINE | ID: covidwho-2064321

ABSTRACT

Background: Acute kidney injury (AKI) is associated with poor outcomes in patients infected with SARS-CoV-2. Sepsis, direct injury to kidney cells by the virus, and severe systemic inflammation are mechanisms implicated in its development. We investigated the association between inflammatory markers (C-reactive protein, procalcitonin, D-dimer, lactate dehydrogenase, and ferritin) in patients infected with SARS-CoV-2 and the development of AKI. Methods: A prospective cohort study performed at the Civil Hospital (Dr. Juan I. Menchaca) Guadalajara, Mexico, included patients aged >18 years with a diagnosis of SARS-CoV-2 pneumonia confirmed by RT-PCR and who did or did not present with AKI (KDIGO) while hospitalized. Biomarkers of inflammation were recorded, and kidney function was estimated using the CKD-EPI formula. Results: 291 patients were included (68% males; average age, 57 years). The incidence of AKI was 40.5% (118 patients); 21% developed stage 1 AKI, 6% developed stage 2 AKI, and 14% developed stage 3 AKI. The development of AKI was associated with higher phosphate (p = 0.002) (RR 1.39, CI 95% 1.13-1.72), high procalcitonin levels at hospital admission (p = 0.005) (RR 2.09, CI 95% 1.26-3.50), and high APACHE scores (p = 0.011) (RR 2.0, CI 95% 1.17-3.40). The survival analysis free of AKI according to procalcitonin levels and APACHE scores demonstrated a lower survival in patients with procalcitonin >0.5 ng/ml (p = 0.001) and APACHE >15 points (p = 0.004). Conclusions: Phosphate, high procalcitonin levels, and APACHE levels >15 were predictors of AKI development in patients hospitalized with COVID-19.


Subject(s)
Acute Kidney Injury , COVID-19 , Sepsis , Male , Humans , Middle Aged , Female , APACHE , SARS-CoV-2 , Procalcitonin , Prospective Studies , C-Reactive Protein , COVID-19/complications , COVID-19/diagnosis , Retrospective Studies , Acute Kidney Injury/diagnosis , Biomarkers , Ferritins , Phosphates , Lactate Dehydrogenases , Risk Factors
3.
Ter Arkh ; 94(6): 743-747, 2022 Aug 04.
Article in Russian | MEDLINE | ID: covidwho-2044340

ABSTRACT

AIM: To determine the incidence and risk factors of acute kidney injury (AKI) in Russian cohort of patients with COVID-19. MATERIALS AND METHODS: We included 315 patients, who were hospitalized with COVID-19 from October 2020 till February 2021. The diagnosis was established on the basis of the positive SARS-CoV-2 swab test and/or typical radiologic findings on CT scans. RESULTS: AKI complicated the clinical course in 92 (29.21%) cases. The independent risk factors of AKI were female sex, underline chronic kidney disease and the highest level of C-reactive protein during hospitalization. In the general group of patients were 41 (13%) lethal cases, in the group with AKI 32 (34.8%). Compared with those without AKI, patients with AKI had 4.065 (95% confidence interval 2.154 to 7.671) times the odds of death. Respiratory support, the highest serum creatinine and glucose levels appeared to be the risk factors of death among patients with AKI in the multivariable Cox regression. CONCLUSION: The clinical course of COVID-19 was complicated by AKI in 29% cases. The independent risk factors of AKI in patients with COVID-19 are underline chronic kidney disease, circulatory disorder and the highest level of C-reactive protein during hospitalization.


Subject(s)
Acute Kidney Injury , COVID-19 , Renal Insufficiency, Chronic , Humans , Female , Male , COVID-19/complications , COVID-19/epidemiology , SARS-CoV-2 , Creatinine , C-Reactive Protein , Retrospective Studies , Risk Factors , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Kidney , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/etiology , Glucose , Hospital Mortality
4.
J Nephrol ; 35(9): 2383-2386, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2014624

ABSTRACT

INTRODUCTION: Acute kidney injury (AKI) is commonly seen in critically ill hospitalized patients with COVID-19 and its incidence reaches 60% in this setting. The aim of this work was to determine the prevalence, characteristics, risk factors and mortality of AKI in patients admitted to the intensive care unit (ICU) for COVID-19. PATIENTS AND METHODS: This observational retrospective case series was conducted between February 1, 2020 and December 31, 2020 at the ICU of the university hospital Mohammed VI of Oujda, Morocco. all COVID-19 patients hospitalized in the ICU with acute respiratory failure were included. AKI was defined and classified into three stages using the KDIGO criteria 2012. We excluded patients with end-stage kidney disease and those who were under 18 years old. RESULTS: Six hundred adult patients were included and 65.5% of them were men. Sixty patients had minimal lung damage (< 25%), 105 patients had mild lung damage (25-50%), 186 had severe lung damage (50-75%) and 193 patients had very severe lung damage (> 75%). A total of 210 patients (35%) developed AKI, of whom 78 (37.2%) had mild AKI (stage 1) and 132 (62.8%) severe AKI (stages 2 and 3). Patients in the severe and mild AKI groups had a higher rate of comorbidities, especially hypertension (mild AKI [46.2%] vs. severe AKI [36.4%] vs. no AKI [27.4%], p = 0.002) and diabetes (mild AKI [52.6%] vs. severe AKI [33.3%] vs. no AKI [26.4%], p < 0.001). During hospitalization, 23.3% of patients with AKI received kidney replacement therapy. In-hospital mortality was observed in 51.3% for mild AKI, 55.3% for severe AKI and 21% in patients who did not have AKI (p < 0.001). CONCLUSION: Our findings revealed that not only severe AKI, but also mild AKI was correlated to in-hospital mortality. Whatever the severity of the kidney impairment, it remains a major prognostic element.


Subject(s)
Acute Kidney Injury , COVID-19 , Adolescent , Adult , Female , Humans , Male , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/therapy , COVID-19/complications , COVID-19/epidemiology , Critical Illness , Hospital Mortality , Intensive Care Units , Morocco/epidemiology , Prevalence , Retrospective Studies , Risk Factors
5.
BMC Med ; 20(1): 324, 2022 09 02.
Article in English | MEDLINE | ID: covidwho-2009398

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is frequently associated with COVID-19, and the need for kidney replacement therapy (KRT) is considered an indicator of disease severity. This study aimed to develop a prognostic score for predicting the need for KRT in hospitalised COVID-19 patients, and to assess the incidence of AKI and KRT requirement. METHODS: This study is part of a multicentre cohort, the Brazilian COVID-19 Registry. A total of 5212 adult COVID-19 patients were included between March/2020 and September/2020. Variable selection was performed using generalised additive models (GAM), and least absolute shrinkage and selection operator (LASSO) regression was used for score derivation. Accuracy was assessed using the area under the receiver operating characteristic curve (AUC-ROC). RESULTS: The median age of the model-derivation cohort was 59 (IQR 47-70) years, 54.5% were men, 34.3% required ICU admission, 20.9% evolved with AKI, 9.3% required KRT, and 15.1% died during hospitalisation. The temporal validation cohort had similar age, sex, ICU admission, AKI, required KRT distribution and in-hospital mortality. The geographic validation cohort had similar age and sex; however, this cohort had higher rates of ICU admission, AKI, need for KRT and in-hospital mortality. Four predictors of the need for KRT were identified using GAM: need for mechanical ventilation, male sex, higher creatinine at hospital presentation and diabetes. The MMCD score had excellent discrimination in derivation (AUROC 0.929, 95% CI 0.918-0.939) and validation (temporal AUROC 0.927, 95% CI 0.911-0.941; geographic AUROC 0.819, 95% CI 0.792-0.845) cohorts and good overall performance (Brier score: 0.057, 0.056 and 0.122, respectively). The score is implemented in a freely available online risk calculator ( https://www.mmcdscore.com/ ). CONCLUSIONS: The use of the MMCD score to predict the need for KRT may assist healthcare workers in identifying hospitalised COVID-19 patients who may require more intensive monitoring, and can be useful for resource allocation.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/therapy , Adult , Aged , COVID-19/therapy , Dextrans , Female , Humans , Male , Middle Aged , Mitomycin , ROC Curve , Renal Replacement Therapy/adverse effects , Retrospective Studies , Risk Factors
6.
BMC Nephrol ; 23(1): 308, 2022 09 08.
Article in English | MEDLINE | ID: covidwho-2009365

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) was common in the first two waves of the SARS-COV-2 pandemic in critically ill patients. A high percentage of these patients required renal replacement therapy and died in the hospital. METHODS: The present study examines the clinical presentation, laboratory parameters and therapeutic interventions in critically ill patients with AKI admitted to the ICU in two centres, one each in India and Pakistan. Patient and outcome details of all critically ill COVID 19 patients admitted to the ICU requiring renal replacement therapy were collected. Data was analysed to detect patient variables associated with mortality. RESULTS: A total of 1,714 critically ill patients were admitted to the ICUs of the two centres. Of these 393 (22.9%) had severe acute kidney injury (AKIN stage 3) requiring dialysis. Of them, 60.5% were men and the mean (± SD) age was 58.78 (± 14.4) years. At the time of initiation of dialysis, 346 patients (88%) were oligo-anuric. The most frequent dialysis modality in these patients was intermittent hemodialysis (48.1%) followed by slow low efficiency dialysis (44.5%). Two hundred and six (52.4%) patients died. The mortality was higher among the Indian cohort (68.1%) than the Pakistani cohort (43.4%). Older age (age > 50 years), low serum albumin altered sensorium, need for slower forms of renal replacement therapy and ventilatory support were independently associated with mortality. CONCLUSION: There was a very high mortality in patients with COVID-19 associated AKI undergoing RRT in the ICUs in this cohort from the Indian sub-continent.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/therapy , Adult , Aged , COVID-19/therapy , Critical Illness/therapy , Female , Humans , Intensive Care Units , Male , Middle Aged , Pakistan/epidemiology , Renal Dialysis/adverse effects , Renal Replacement Therapy , Retrospective Studies , SARS-CoV-2
7.
Int J Infect Dis ; 122: 802-810, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1983201

ABSTRACT

OBJECTIVES: This study used the long-short-term memory (LSTM) artificial intelligence method to model multiple time points of clinical laboratory data, along with demographics and comorbidities, to predict hospital-acquired acute kidney injury (AKI) onset in patients with COVID-19. METHODS: Montefiore Health System data consisted of 1982 AKI and 2857 non-AKI (NAKI) hospitalized patients with COVID-19, and Stony Brook Hospital validation data consisted of 308 AKI and 721 NAKI hospitalized patients with COVID-19. Demographic, comorbidities, and longitudinal (3 days before AKI onset) laboratory tests were analyzed. LSTM was used to predict AKI with fivefold cross-validation (80%/20% for training/validation). RESULTS: The top predictors of AKI onset were glomerular filtration rate, lactate dehydrogenase, alanine aminotransferase, aspartate aminotransferase, and C-reactive protein. Longitudinal data yielded marked improvement in prediction accuracy over individual time points. The inclusion of comorbidities and demographics further improves prediction accuracy. The best model yielded an area under the curve, accuracy, sensitivity, and specificity to be 0.965 ± 0.003, 89.57 ± 1.64%, 0.95 ± 0.03, and 0.84 ± 0.05, respectively, for the Montefiore validation dataset, and 0.86 ± 0.01, 83.66 ± 2.53%, 0.66 ± 0.10, 0.89 ± 0.03, respectively, for the Stony Brook Hospital validation dataset. CONCLUSION: LSTM model of longitudinal clinical data accurately predicted AKI onset in patients with COVID-19. This approach could help heighten awareness of AKI complications and identify patients for early interventions to prevent long-term renal complications.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Artificial Intelligence , COVID-19/diagnosis , Humans , Machine Learning , Memory, Short-Term , Prognosis , Retrospective Studies , Risk Factors
8.
Ren Fail ; 44(1): 1280-1288, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1978081

ABSTRACT

The coronavirus disease-2019 (COVID-19) outbreak has been declared a global pandemic. COVID-19-associated acute kidney injury (COVID-19 AKI) is related to a high mortality rate and serves as an independent risk factor for hospital death in patients with COVID-19. Early diagnosis would allow for earlier intervention and potentially improve patient outcomes. The goal of early identification of AKI has been the primary impetus for AKI biomarker research, and several kidney injury biomarkers have been demonstrated to be beneficial in predicting COVID-19 AKI as well as disease progression in COVID-19. Furthermore, such data provide valuable insights into the molecular mechanisms underlying this complex and unique disease and serve as a molecular phenotyping tool that could be utilized to direct clinical intervention. This review focuses on a number of kidney injury biomarkers, such as CysC, NAGAL, KIM-1, L-FABP, IL-18, suPAR, and [TIMP-2] • [IGFBP7], which have been widely studied in common clinical settings, such as sepsis, cardiac surgery, and contrast-induced AKI. We explore the role of kidney injury biomarkers in COVID-19 and discuss what remains to be learned.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Biomarkers , COVID-19/complications , Humans , Insulin-Like Growth Factor Binding Proteins , Kidney , Predictive Value of Tests
9.
J Clin Psychopharmacol ; 42(5): 461-463, 2022.
Article in English | MEDLINE | ID: covidwho-1973302

ABSTRACT

PURPOSES: The aims of the study were to review 3 cases of lithium toxicity among individuals with bipolar disorder who were diagnosed with COVID-19 and to review the literature discussing the implications of COVID-19 and exposure to SARS-CoV-2 relative to medical use of lithium in management of bipolar disorder. METHODS: This is a case review of medical and psychiatric notes of 3 individuals with bipolar disorder, managed with lithium, who developed COVID-19. This study discussed these cases in context of previous case reports and relevant literature pertaining to lithium and exposure to SARS-CoV-2. FINDINGS: Infection with SARS-CoV-2 along with symptoms of COVID-19 and mental state changes in three individuals were temporally associated with lithium levels in the toxic range. IMPLICATIONS: Exposure to SARS-CoV-2 or symptoms suggestive of COVID-19 should result in increased clinical monitoring of individuals taking lithium. Those taking lithium and providers are advised to have a low clinical threshold for requesting lithium levels and kidney function estimates for the duration of the COVD-19 pandemic.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/chemically induced , Acute Kidney Injury/diagnosis , Humans , Lithium/adverse effects , Pandemics , SARS-CoV-2
10.
Crit Care ; 26(1): 225, 2022 07 25.
Article in English | MEDLINE | ID: covidwho-1962881

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) has been reported as a frequent complication of critical COVID-19. We aimed to evaluate the occurrence of AKI and use of kidney replacement therapy (KRT) in critical COVID-19, to assess patient and kidney outcomes and risk factors for AKI and differences in outcome when the diagnosis of AKI is based on urine output (UO) or on serum creatinine (sCr). METHODS: Multicenter, retrospective cohort analysis of patients with critical COVID-19 in seven large hospitals in Belgium. AKI was defined according to KDIGO within 21 days after ICU admission. Multivariable logistic regression analysis was used to explore the risk factors for developing AKI and to assess the association between AKI and ICU mortality. RESULTS: Of 1286 patients, 85.1% had AKI, and KRT was used in 9.8%. Older age, obesity, a higher APACHE II score and use of mechanical ventilation at day 1 of ICU stay were associated with an increased risk for AKI. After multivariable adjustment, all AKI stages were associated with ICU mortality. AKI was based on sCr in 40.1% and UO in 81.5% of patients. All AKI stages based on sCr and AKI stage 3 based on UO were associated with ICU mortality. Persistent AKI was present in 88.6% and acute kidney disease (AKD) in 87.6%. Rapid reversal of AKI yielded a better prognosis compared to persistent AKI and AKD. Kidney recovery was observed in 47.4% of surviving AKI patients. CONCLUSIONS: Over 80% of critically ill COVID-19 patients had AKI. This was driven by the high occurrence rate of AKI defined by UO criteria. All AKI stages were associated with mortality (NCT04997915).


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Belgium/epidemiology , COVID-19/complications , Cohort Studies , Critical Illness , Hospitals , Humans , Intensive Care Units , Retrospective Studies
11.
Biomed Pharmacother ; 153: 113454, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1936097

ABSTRACT

BACKGROUND: Analysis of autopsy tissues obtained from patients who died from COVID-19 showed kidney tropism for SARS-COV-2, with COVID-19-related renal dysfunction representing an overlooked problem even in patients lacking previous history of chronic kidney disease. This study aimed to corroborate in a substantial sample of consecutive acutely ill COVID-19 hospitalized patients the efficacy of estimated GFR (eGFR), assessed at hospital admission, to identify acute renal function derangement and the predictive role of its association with in-hospital death and need for mechanical ventilation and admission to intensive care unit (ICU). METHODS: We retrospectively analyzed charts of 764 patients firstly admitted to regular medical wards (Division of Internal Medicine) for symptomatic COVID-19 between March 6th and May 30th, 2020 and between October 1st, 2020 and March 15th, 2021. eGFR values were calculated with the 2021 CKD-EPI formula and assessed at hospital admission and discharge. Baseline creatinine and GFR values were assessed by chart review of patients' medical records from hospital admittance data in the previous year. The primary outcome was in-hospital mortality, while ARDS development and need for non-invasive ventilation (NIV) and invasive mechanical ventilation (IMV) were the secondary outcomes. RESULTS: SARS-COV-2 infection was diagnosed in 764 patients admitted with COVID-19 symptoms. A total of 682 patients (age range 23-100 years) were considered for statistical analysis, 310 needed mechanical ventilation and 137 died. An eGFR value <60 mL/min/1.73 m2 was found in 208 patients, 181 met KDIGO AKI criteria; eGFR values at hospital admission were significantly lower with respect to both hospital discharge and baseline values (p < 0.001). In multivariate analysis, an eGFR value <60 mL/min/1.73 m2 was significantly associated with in-hospital mortality (OR 2.6, 1.7-4.8, p = 0.003); no association was found with both ARDS and need for mechanical ventilation. eGFR was non-inferior to both IL-6 serum levels and CALL Score in predicting in-hospital death (AUC 0.71, 0.68-0.74, p = 0.55). CONCLUSIONS: eGFR calculated at hospital admission correlated well with COVID-19-related kidney injury and eGFR values < 60 mL/min/1,73 m2 were independently associated with in-hospital mortality, but not with both ARDS or need for mechanical ventilation.


Subject(s)
Acute Kidney Injury , COVID-19 , Respiratory Distress Syndrome , Acute Kidney Injury/diagnosis , Acute Kidney Injury/therapy , Adult , Aged , Aged, 80 and over , COVID-19/therapy , Glomerular Filtration Rate , Hospital Mortality , Hospitals , Humans , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2 , Young Adult
12.
Bratisl Lek Listy ; 123(5): 382-380, 2022.
Article in English | MEDLINE | ID: covidwho-1939235

ABSTRACT

BACKGROUND AND OBJECTIVE: SARS-CoV-2 as the newest member of Beta-Coronaviruses can cause a complicated disease called COVID-19. This virus is able to penetrate a broad range of human cells, such as liver, heart, and kidney cells via ACE2-associated endocytosis. Heart involvement can result in kidney injuries; it is now testified that kidney congestion occurs following the cardio-renal syndrome. Acute Kidney Injury is one of the most critical damages to the kidney in a wide range of COVID-19-caused kidney injuries (which includes proteinuria, hematuria, etc.). Examination of AKI risk factors in COVID-19 patients can assist physicians to prevent its incidence. The final aim of this systematic review was to collate the condition and risk factors of AKI and non-AKI COVID-19 patients and to investigate AKI incidence in high-risk patients. METHOD: A complete and comprehensive survey was performed by reviewing original articles and case reports indexed in various databases such as PubMed/Medline, Embase, and WoS to find appropriate articles. The eligible articles then were selected by two authors and entered into the evaluation process. This systematic review conforms PRISMA statement. RESULTS: After searching for potentially relevant articles, 14 out of the initial 463 articles from 6 countries were selected and evaluated. All of eligible articles have investigated the rate of AKI incidence and its physio-pathological consequences in COVID-19 patients in all conditions (not only patients in critical condition). First, the initial differences between AKI and non-AKI patients were compared. As an instance, our study revealed that mean of White Blood cells (WBC) was much higher in AKI patients which can be responsible for the severe conditions. Then, other variations like differences in laboratory and imaging findings were compared between these two groups. Our outcomes demonstrated that the presence of diabetes mellitus (DM), hypertension (HTN), and male sex can be three significant risk factors in AKI incidence in COVID-19 patients. Fatality rate and treatment methods were also compared among these two groups. CONCLUSION: As one of kidney damages, AKI can worsen COVID-19 patients' status by causing conditions such as acidosis. Our study shows the common symptoms in AKI COVID-19 patients were fever, cough, and malaise. The results of our study can help physicians to arrange COVID-19 with AKI patients' treatment strategy precisely (Tab. 8, Fig. 1, Ref. 48).


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , COVID-19/complications , Female , Humans , Male , Proteinuria , Risk Factors , SARS-CoV-2
13.
Int J Mol Sci ; 23(13)2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1934128

ABSTRACT

Acute kidney injury (AKI) is an increasingly common problem afflicting all ages, occurring in over 20% of non-critically ill hospitalized patients and >30% of children and >50% of adults in critical care units. AKI is associated with serious short-term and long-term consequences, and current therapeutic options are unsatisfactory. Large gaps remain in our understanding of human AKI pathobiology, which have hindered the discovery of novel diagnostics and therapeutics. Although animal models of AKI have been extensively studied, these differ significantly from human AKI in terms of molecular and cellular responses. In addition, animal models suffer from interspecies differences, high costs and ethical considerations. Static two-dimensional cell culture models of AKI also have limited utility since they have focused almost exclusively on hypoxic or cytotoxic injury to proximal tubules alone. An optimal AKI model would encompass several of the diverse specific cell types in the kidney that could be targets of injury. Second, it would resemble the human physiological milieu as closely as possible. Third, it would yield sensitive and measurable readouts that are directly applicable to the human condition. In this regard, the past two decades have seen a dramatic shift towards newer personalized human-based models to study human AKI. In this review, we provide recent developments using human stem cells, organoids, and in silico approaches to advance personalized AKI diagnostics and therapeutics.


Subject(s)
Acute Kidney Injury , Organoids , Acute Kidney Injury/diagnosis , Acute Kidney Injury/therapy , Animals , Critical Illness/therapy , Humans , Intensive Care Units , Kidney Tubules, Proximal , Stem Cells
14.
Pediatr Crit Care Med ; 23(7): e361-e365, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1931962

ABSTRACT

OBJECTIVES: Multisystem inflammatory syndrome in children (MIS-C) manifests with heart dysfunction and respiratory failure some weeks after a severe acute respiratory syndrome coronavirus disease 2 infection. The aim of our study was to explore the prevalence, severity, timing, and duration of acute kidney injury (AKI) in MIS-C patients. Furthermore, we evaluated which clinical variables and outcomes are associated with AKI. DESIGN: Multicenter retrospective study. SETTING: Five tertiary hospital PICUs in Italy. Data were collected in the first 7 days of PICU admission and renal function was followed throughout the hospital stay. PATIENTS: Patients less than 18 years old admitted to the PICU for greater than 24 hours with MIS-C. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We collected the following data, including: demographic information, inflammatory biomarkers, lactate levels, Pa o2 /F io2 , ejection fraction, N-terminal pro-B-type natriuretic peptide (NT-proBNP), renal function (serum creatinine, urinary output, fluid balance, and percentage fluid accumulation), Vasoactive-Inotropic Score (VIS), pediatric Sequential Organ Failure Assessment (pSOFA), and Pediatric Index of Mortality 3. AKI was diagnosed in eight of 38 patients (21%) and severe AKI was present in four of eight patients. In all cases, AKI was present at PICU admission and its median (interquartile range) duration was 3.5 days (1.5-5.7 d). We did not identify differences between AKI and no-AKI patients when not making correction for multiple comparisons, for example, in weight, ejection fraction, pSOFA, Pa o2 /F io2 , and lactates. We failed to identify any difference in these groups in urine output and fluid balance. Exploratory analyses of serial data between no-AKI and AKI patients showed significant differences on lymphocyte count, NT-proBNP value, ejection fraction, pSOFA, Pa o2 /F io2 , and VIS. CONCLUSIONS: In this multicenter Italian PICU experience, MIS-C is associated with AKI in one-in-five cases. In general, AKI is characterized by an associated reduction in glomerular filtration rate with a self-limiting time course.


Subject(s)
Acute Kidney Injury , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Adolescent , COVID-19/complications , Child , Humans , Intensive Care Units, Pediatric , Prospective Studies , Retrospective Studies , Systemic Inflammatory Response Syndrome
15.
Int J Mol Sci ; 23(13)2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1917517

ABSTRACT

Acute kidney injury (AKI) is a prevalent complication in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive inpatients, which is linked to an increased mortality rate compared to patients without AKI. Here we analysed the difference in kidney blood biomarkers in SARS-CoV-2 positive patients with non-fatal or fatal outcome, in order to develop a mortality prediction model for hospitalised SARS-CoV-2 positive patients. A retrospective cohort study including data from suspected SARS-CoV-2 positive patients admitted to a large National Health Service (NHS) Foundation Trust hospital in the Yorkshire and Humber regions, United Kingdom, between 1 March 2020 and 30 August 2020. Hospitalised adult patients (aged ≥ 18 years) with at least one confirmed positive RT-PCR test for SARS-CoV-2 and blood tests of kidney biomarkers within 36 h of the RT-PCR test were included. The main outcome measure was 90-day in-hospital mortality in SARS-CoV-2 infected patients. The logistic regression and random forest (RF) models incorporated six predictors including three routine kidney function tests (sodium, urea; creatinine only in RF), along with age, sex, and ethnicity. The mortality prediction performance of the logistic regression model achieved an area under receiver operating characteristic (AUROC) curve of 0.772 in the test dataset (95% CI: 0.694-0.823), while the RF model attained the AUROC of 0.820 in the same test cohort (95% CI: 0.740-0.870). The resulting validated prediction model is the first to focus on kidney biomarkers specifically on in-hospital mortality over a 90-day period.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Adult , Biomarkers , COVID-19/diagnosis , Hospital Mortality , Humans , Kidney , Retrospective Studies , SARS-CoV-2 , State Medicine
16.
Sao Paulo Med J ; 140(4): 566-573, 2022.
Article in English | MEDLINE | ID: covidwho-1902713

ABSTRACT

BACKGROUND: Coronavirus disease 19 (COVID-19) is a multisystemic disease with high incidence of acute kidney injury (AKI). OBJECTIVE: To describe the clinical characteristics and factors associated with AKI among patients hospitalized with COVID-19. DESIGN AND SETTING: Retrospective cohort conducted at Hospital Civil de Culiacan, Mexico. METHODS: We included 307 patients hospitalized due to COVID-19. AKI was defined and staged based on serum creatinine levels in accordance with the criteria of the Acute Kidney Injury Network (AKIN). Multivariate logistic regression analysis was used to determine factors associated with AKI. RESULTS: The patients' age was 56 ± 15 years (64.5% male). The incidence of AKI was 33.6% (n = 103). Overall, 53.4% of patients had community-acquired AKI, and 46.6% had hospital-acquired AKI. Additionally, 15.5% of them presented AKIN stage 1; 34% had AKIN stage 2; and 50.5% had AKIN stage 3. Hemodialysis was required for 10.7% of the patients. The factors associated with AKI were chronic kidney disease (odds ratio, OR: 10.8; P = 0.04), use of norepinephrine (OR: 7.3; P = 0.002), diabetes mellitus (OR: 2.9; P = 0.03), C-reactive protein level (OR: 1.005; P = 0.01) and COVID-19 severity index based on chest tomography (OR: 1.09; statistical trend, P = 0.07). Hospital stay (11 ± 7 days; P < 0.001) and mortality (83.5 versus 31.4%; P < 0.05) were greater among patients with AKI. CONCLUSION: AKI was a frequent and serious complication in our cohort of patients hospitalized with COVID-19, which was associated with high mortality and long hospital stay.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/virology , Adult , Aged , C-Reactive Protein/analysis , COVID-19/complications , Creatinine/blood , Female , Hospital Mortality , Humans , Incidence , Male , Middle Aged , Norepinephrine/adverse effects , Retrospective Studies , Risk Factors
18.
Ren Fail ; 43(1): 830-839, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1882852

ABSTRACT

Loop diuretics are among the most widely used drugs worldwide and are commonly employed in the management of complications associated with acute kidney injury (AKI), namely volume overload and electrolyte management. The use of loop diuretics in critically ill patients with AKI is paramount to preventing or treating pulmonary edema. The naturetic response to a loop diuretic is based on its unique renal pharmacology. Our review article summarizes the pharmacology of furosemide in the intact nephron and discusses how this response might be altered by the presence of AKI. We discuss the increasing body of literature on the latest clinical utility of furosemide namely, it's challenge test, known as the furosemide stress test which has highlighted a new and novel role for furosemide over the past number of years. This test assists with the identification of AKI subjects at higher risk of AKI progression and the need for renal replacement therapy. The stress test can also predict cessation of continuous renal replacement therapy in patients with established AKI. On the basis of the evidence presented in this review, we propose future potential studies of furosemide in AKI.


Subject(s)
Acute Kidney Injury/diagnosis , Furosemide , Critical Illness , Diuretics , Electrolytes , Exercise Test , Humans , Randomized Controlled Trials as Topic
20.
Curr Opin Anaesthesiol ; 35(2): 215-223, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1860920

ABSTRACT

PURPOSE OF REVIEW: Acute kidney injury (AKI) is common in hospitalized patients and is a major risk factor for increased length of stay, morbidity, and mortality in postoperative patients. There are multiple barriers to reducing perioperative AKI - the etiology is multi-factorial and the diagnosis is fraught with issues. We review the recent literature on perioperative AKI and some considerations for anesthesiologists that examine the far-reaching effects of AKI on multiple organ systems. RECENT FINDINGS: This review will discuss recent literature that addresses the epidemiology, use of novel biomarkers in risk stratification, and therapeutic modalities for AKI in burn, pediatrics, sepsis, trauma, cardiac, and liver disease, contrast-induced AKI, as well as the evidence assessing goal-directed fluid therapy. SUMMARY: Recent studies address the use of risk stratification models and biomarkers, more sensitive than creatinine, in the preoperative identification of patients at risk for AKI. Although exciting, these scores and models need validation. There is a need for research assessing whether early AKI detection improves outcomes. Enhanced recovery after surgery utilizing goal-directed fluid therapy has not been shown to make an appreciable difference in the incidence of AKI. Reducing perioperative AKI requires a multi-pronged and possibly disease-specific approach.


Subject(s)
Acute Kidney Injury , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Biomarkers , Child , Creatinine , Humans , Incidence , Postoperative Complications/diagnosis , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL