Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add filters

Document Type
Year range
1.
J Clin Pathol ; 74(12): 796-803, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1526518

ABSTRACT

AIMS: Hospitalised patients with COVID-19 have a variable incidence of acute kidney injury (AKI) according to studies from different nationalities. The present systematic review and meta-analysis describes the incidence of AKI, need for renal replacement therapy (RRT) and mortality among patients with COVID-19-associated AKI. METHODS: We systematically searched electronic database PubMed, SCOPUS and Web of Science to identify English articles published until 25 May 2020. In case of significant heterogeneity, the meta-analyses were conducted assuming a random-effects model. RESULTS: From 746 screened publications, we selected 21 observational studies with 15 536 patients with COVID-19 for random-effects model meta-analyses. The overall incidence of AKI was 12.3% (95% CI 7.3% to 20.0%) and 77% of patients with AKI were critically ill (95% CI 58.9% to 89.0%). The mortality among patients with AKI was 67% (95% CI 39.8% to 86.2%) and the risk of death was 13 times higher compared with patients without AKI (OR=13.3; 95% CI 6.1 to 29.2). Patients with COVID-19-associated AKI needed for RRT in 23.4% of cases (95% CI 12.6% to 39.4%) and those cases had high mortality (89%-100%). CONCLUSION: The present study evidenced an incidence of COVID-19-associated AKI higher than previous meta-analysis. The majority of patients affected by AKI were critically ill and mortality rate among AKI cases was high. Thus, it is extremely important for health systems to be aware about the impact of AKI on patients' outcomes in order to establish proper screening, prevention of additional damage to the kidneys and adequate renal support when needed.


Subject(s)
Acute Kidney Injury/epidemiology , COVID-19/epidemiology , Acute Kidney Injury/diagnosis , Acute Kidney Injury/mortality , Acute Kidney Injury/therapy , Adult , Aged , COVID-19/diagnosis , COVID-19/mortality , COVID-19/therapy , Critical Illness , Female , Humans , Incidence , Male , Middle Aged , Prognosis , Renal Replacement Therapy , Risk Assessment , Risk Factors
2.
Cytokine ; 149: 155727, 2022 01.
Article in English | MEDLINE | ID: covidwho-1506763

ABSTRACT

BACKGROUND: Although pneumonia is the hallmark of coronavirus disease 2019 (COVID-19), multiple organ failure may develop in severe disease. TNFα receptors in their soluble form (sTNFR) are involved in the immune cascade in other systemic inflammatory processes such as septic shock, and could mediate the inflammatory activation of distant organs. The aim of this study is to analyse plasma levels of sTNFR 1 and 2 in association with organ failure and outcome in critically ill patients with COVID-19. METHODS: After informed consent, we included 122 adult patients with PCR-confirmed COVID-19 at ICU admission. Demographic data, illness severity scores, organ failure and survival at 30 days were collected. Plasma sTNFR 1 and 2 levels were quantified during the first days after ICU admission. Twenty-five healthy blood donors were used as control group. RESULTS: Levels of sTNFR were higher in severe COVID-19 patients compared to controls (p < 0.001). Plasma levels of sTNFR were associated to illness severity scores (SAPS 3 and SOFA), inflammation biomarkers such as IL-6, ferritin and PCT as well as development of AKI during ICU stay. sTNFR 1 higher than 2.29 ng/mL and? sTNFR 2 higher than 11.7 ng/mL were identified as optimal cut-offs to discriminate survivors and non-survivors 30 days after ICU admission and had an area under the curve in receiver operating characteristic curve of 0.75 and 0.67 respectively. CONCLUSION: Plasma levels of sTNFR 1 and 2 were higher in COVID-19 patients compared to controls and were strongly associated with other inflammatory biomarkers, severity of illness and acute kidney injury development during ICU stay. In addition, sTNFR 1 was an independent predictor of 30-day mortality after adjustment for age and respiratory failure.


Subject(s)
Acute Kidney Injury/blood , Acute Kidney Injury/mortality , COVID-19/blood , COVID-19/mortality , Critical Illness/mortality , Receptors, Tumor Necrosis Factor/blood , Biomarkers/blood , Female , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged , Multiple Organ Failure/blood , Multiple Organ Failure/mortality , Organ Dysfunction Scores , Prospective Studies , SARS-CoV-2/pathogenicity , Severity of Illness Index
3.
BMC Nephrol ; 22(1): 359, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1496153

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is common among patients hospitalised with COVID-19 and associated with worse prognosis. The aim of this study was to investigate the epidemiology, risk factors and outcomes of AKI in patients with COVID-19 in a large UK tertiary centre. METHODS: We analysed data of consecutive adults admitted with a laboratory-confirmed diagnosis of COVID-19 across two sites of a hospital in London, UK, from 1st January to 13th May 2020. RESULTS: Of the 1248 inpatients included, 487 (39%) experienced AKI (51% stage 1, 13% stage 2, and 36% stage 3). The weekly AKI incidence rate gradually increased to peak at week 5 (3.12 cases/100 patient-days), before reducing to its nadir (0.83 cases/100 patient-days) at the end the study period (week 10). Among AKI survivors, 84.0% had recovered renal function to pre-admission levels before discharge and none required on-going renal replacement therapy (RRT). Pre-existing renal impairment [odds ratio (OR) 3.05, 95%CI 2.24-4,18; p <  0.0001], and inpatient diuretic use (OR 1.79, 95%CI 1.27-2.53; p <  0.005) were independently associated with a higher risk for AKI. AKI was a strong predictor of 30-day mortality with an increasing risk across AKI stages [adjusted hazard ratio (HR) 1.59 (95%CI 1.19-2.13) for stage 1; p < 0.005, 2.71(95%CI 1.82-4.05); p < 0.001for stage 2 and 2.99 (95%CI 2.17-4.11); p < 0.001for stage 3]. One third of AKI3 survivors (30.7%), had newly established renal impairment at 3 to 6 months. CONCLUSIONS: This large UK cohort demonstrated a high AKI incidence and was associated with increased mortality even at stage 1. Inpatient diuretic use was linked to a higher AKI risk. One third of survivors with AKI3 exhibited newly established renal impairment already at 3-6 months.


Subject(s)
Acute Kidney Injury , COVID-19 , Renal Replacement Therapy , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Acute Kidney Injury/mortality , Acute Kidney Injury/therapy , COVID-19/complications , COVID-19/diagnosis , COVID-19/epidemiology , Cohort Studies , Hospital Mortality , Humans , Incidence , Intensive Care Units/statistics & numerical data , Kidney Function Tests/methods , Male , Middle Aged , Outcome and Process Assessment, Health Care , Patient Acuity , Renal Replacement Therapy/methods , Renal Replacement Therapy/statistics & numerical data , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index , United Kingdom/epidemiology
4.
Sci Rep ; 11(1): 20073, 2021 10 08.
Article in English | MEDLINE | ID: covidwho-1462039

ABSTRACT

Kidney transplantation recipients (KTR) with coronavirus disease 2019 (COVID-19) are at higher risk of death than general population. However, mortality risk factors in KTR are still not clearly identified. Our objective was to systematically analyze published evidence for risk factors associated with mortality in COVID-19 KTR. Electronic databases were searched for eligible studies on 1 August 2021. All prospective and retrospective studies of COVID-19 in KTR were considered eligible without language restriction. Since data in case reports and series could potentially be subsets of larger studies, only studies with ≥ 50 patients were included. Random-effects model meta-analysis was used to calculate weighted mean difference (WMD) and pooled odds ratio (OR) of factors associated with mortality. From a total 1,137 articles retrieved, 13 were included in the systematic review and meta-analysis comprising 4,440 KTR. Compared with survivors, non-survivors were significantly older (WMD 10.5 years, 95% CI 9.3-11.8). KTR of deceased donor were at higher risk of death (OR 1.73, 95% CI 1.10-2.74). Comorbidities including diabetes mellitus, cardiovascular disease, and active cancer significantly increased mortality risk. KTR with dyspnea (OR 5.68, 95% CI 2.11-15.33) and pneumonia (OR 10.64, 95% CI 3.37-33.55) at presentation were at higher mortality risk, while diarrhea decreased the risk (OR 0.61, 95% CI 0.47-0.78). Acute kidney injury was associated with mortality (OR 3.24, 95% CI 1.36-7.70). Inflammatory markers were significantly higher in the non-survivors, including C-reactive protein, procalcitonin, and interleukine-6. A number of COVID-19 mortality risk factors were identified from KTR patient characteristics, presenting symptoms, and laboratory investigations. KTR with these risk factors should receive more intensive monitoring and early therapeutic interventions to optimize health outcomes.


Subject(s)
Acute Kidney Injury/epidemiology , COVID-19/epidemiology , Kidney Transplantation , Acute Kidney Injury/mortality , COVID-19/mortality , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/mortality , Comorbidity , Diabetes Mellitus/epidemiology , Diabetes Mellitus/mortality , Humans , Kidney Transplantation/adverse effects , Neoplasms/epidemiology , Neoplasms/mortality , Risk Factors , SARS-CoV-2/isolation & purification , Transplant Recipients
5.
BMC Nephrol ; 22(1): 297, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1381255

ABSTRACT

BACKGROUND: Kidney disease and renal failure are associated with hospital deaths in patients with COVID - 19. We aimed to test if contrast enhancement affects short-term renal function in hospitalized COVID - 19 patients. METHODS: Plasma creatinine (P-creatinine) was measured on the day of computed tomography (CT) and 24 h, 48 h, and 4-10 days after CT. Contrast-enhanced (n = 142) and unenhanced (n = 24) groups were subdivided, based on estimated glomerular filtration rates (eGFR), > 60 and ≤ 60 ml/min/1.73 m2. Contrast-induced acute renal failure (CI-AKI) was defined as ≥27 µmol/L increase or a > 50% rise in P-creatinine from CT or initiation of renal replacement therapy during follow-up. Patients with renal replacement therapy were studied separately. We evaluated factors associated with a > 50% rise in P-creatinine at 48 h and at 4-10 days after contrast-enhanced CT. RESULTS: Median P-creatinine at 24-48 h and days 4-10 post-CT in patients with eGFR> 60 and eGFR≥30-60 in contrast-enhanced and unenhanced groups did not differ from basal values. CI-AKI was observed at 48 h and at 4-10 days post contrast administration in 24 and 36% (n = 5/14) of patients with eGFR≥30-60. Corresponding figures in the eGFR> 60 contrast-enhanced CT group were 5 and 5% respectively, (p < 0.037 and p < 0.001, Pearson χ2 test). In the former group, four of the five patients died within 30 days. Odds ratio analysis showed that an eGFR≥30-60 and 30-day mortality were associated with CK-AKI both at 48 h and 4-10 days after contrast-enhanced CT. CONCLUSION: Patients with COVID - 19 and eGFR≥30-60 had a high frequency of CK-AKI at 48 h and at 4-10 days after contrast administration, which was associated with increased 30-day mortality. For patients with eGFR≥30-60, we recommend strict indications are practiced for contrast-enhanced CT. Contrast-enhanced CT had a modest effect in patients with eGFR> 60.


Subject(s)
Acute Kidney Injury/chemically induced , COVID-19/complications , Contrast Media/adverse effects , Creatinine/blood , Iodine/adverse effects , Kidney/drug effects , Acute Kidney Injury/blood , Acute Kidney Injury/mortality , Acute Kidney Injury/therapy , Aged , COVID-19/blood , COVID-19/mortality , COVID-19/physiopathology , Female , Glomerular Filtration Rate , Humans , Kidney/diagnostic imaging , Kidney/physiopathology , Male , Middle Aged , Odds Ratio , Regression Analysis , Renal Replacement Therapy , Retrospective Studies , Time Factors , Tomography, X-Ray Computed
6.
Med Intensiva (Engl Ed) ; 45(6): 325-331, 2021.
Article in English | MEDLINE | ID: covidwho-1343315

ABSTRACT

OBJECTIVE: To describe outcomes of critically ill patients with COVID-19, particularly the association of renal replacement therapy to mortality. DESIGN: A single-center prospective observational study was carried out. SETTING: ICU of a tertiary care center. PATIENTS: Consecutive adults with COVID-19 admitted to the ICU. INTERVENTION: Renal replacement therapy. MAIN VARIABLES OF INTEREST: Demographic data, medical history, illness severity, type of oxygen therapy, laboratory data and use of renal replacement therapy to generate a logistic regression model describing independent risk factors for mortality. RESULTS: Of the total of 166 patients, 51% were mechanically ventilated and 26% required renal replacement therapy. The overall hospital mortality rate was 36%, versus 56% for those requiring renal replacement therapy, and 68% for those with both mechanical ventilation and renal replacement therapy. The logistic regression model identified four independent risk factors for mortality: age (adjusted OR 2.8 [95% CI 1.8-4.4] for every 10-year increase), mechanical ventilation (4.2 [1.7-10.6]), need for continuous venovenous hemofiltration (2.3 [1.3-4.0]) and C-reactive protein (1.1 [1.0-1.2] for every 10mg/L increase). CONCLUSIONS: In our cohort, acute kidney injury requiring renal replacement therapy was associated to a high mortality rate similar to that associated to the need for mechanical ventilation, while multiorgan failure necessitating both techniques implied an extremely high mortality risk.


Subject(s)
Acute Kidney Injury/therapy , COVID-19/complications , Critical Illness/therapy , Renal Replacement Therapy , SARS-CoV-2 , Acute Kidney Injury/etiology , Acute Kidney Injury/mortality , Adrenal Cortex Hormones/therapeutic use , Adult , Age Factors , Aged , C-Reactive Protein/analysis , COVID-19/blood , Comorbidity , Continuous Renal Replacement Therapy , Critical Illness/mortality , District of Columbia/epidemiology , Female , Hospital Mortality , Hospitals, University/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Multiple Organ Failure/etiology , Multiple Organ Failure/mortality , Oxygen Inhalation Therapy/statistics & numerical data , Procedures and Techniques Utilization/statistics & numerical data , Prospective Studies , Renal Replacement Therapy/statistics & numerical data , Respiration, Artificial/statistics & numerical data , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/therapy , Risk Factors , Tertiary Care Centers/statistics & numerical data , Treatment Outcome
7.
Pharmacol Res ; 161: 105107, 2020 11.
Article in English | MEDLINE | ID: covidwho-1318943

ABSTRACT

Currently, coronavirus disease 2019 (COVID-19) is spreading rapidly around the world. This study aimed to investigate whether the presence of acute kidney injury (AKI) might increase the risk of severe infection and fatality in COVID-19 patients. We searched the PubMed, Web of Science, ScienceDirect, MedRxiv and COVID-19 academic research communication platforms for studies reporting severe infection rates and case-fatality rates in COVID-19 patients with and without AKI up to June 20, 2020. The main outcomes were the comparisons of the severe infection rates and fatality rates in COVID-19 patients with and without AKI and the estimation of the odds ratio (OR) and its 95 % confidence interval (CI) for severe infection and mortality. Statistical analyses were performed with R statistical software. A total of 40 studies involving 24,527 patients with COVID-19 were included in our meta-analysis. The incidence of AKI was 10 % (95 % CI 8%-13 %) in COVID-19 patients. The patients had higher severe infection and fatality rates (55.6 % vs. 17.7 % and 63.1 % vs. 12.9 %, respectively, all P < 0.01) with COVID-19. AKI was a predictor of fatality (OR = 14.63, 95 % CI: 9.94-21.51, P < 0.00001) and severe infection (OR = 8.11, 95 % CI: 5.01-13.13, P < 0.00001) in patients with COVID-19. Higher levels of serum creatinine (Scr) and blood urea nitrogen (BUN) were associated with a significant increase in fatality [Scr: mean difference (MD): 20.19 µmol/L, 95 % CI: 14.96-25.42, P < 0.001; BUN: MD: 4.07 mmol/L, 95 % CI: 3.33-4.81, P < 0.001] and severe infection (Scr: MD: 7.78 µmol/L, 95 % CI: 4.43-11.14, P < 0.00001, BUN: MD: 2.12 mmol/L, 95 % CI: 1.74-2.50, P < 0.00001) in COVID-19 patients. In conclusion, AKI is associated with severe infection and higher fatality rates in patients with COVID-19. Clinicians should pay more attention to the monitoring and treatment of COVID-19 patients with AKI.


Subject(s)
Acute Kidney Injury/complications , Acute Kidney Injury/mortality , COVID-19/complications , COVID-19/mortality , Acute Kidney Injury/therapy , COVID-19/therapy , Humans
8.
Clin J Am Soc Nephrol ; 16(8): 1158-1168, 2021 08.
Article in English | MEDLINE | ID: covidwho-1311348

ABSTRACT

BACKGROUND AND OBJECTIVES: AKI treated with dialysis initiation is a common complication of coronavirus disease 2019 (COVID-19) among hospitalized patients. However, dialysis supplies and personnel are often limited. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Using data from adult patients hospitalized with COVID-19 from five hospitals from the Mount Sinai Health System who were admitted between March 10 and December 26, 2020, we developed and validated several models (logistic regression, Least Absolute Shrinkage and Selection Operator (LASSO), random forest, and eXtreme GradientBoosting [XGBoost; with and without imputation]) for predicting treatment with dialysis or death at various time horizons (1, 3, 5, and 7 days) after hospital admission. Patients admitted to the Mount Sinai Hospital were used for internal validation, whereas the other hospitals formed part of the external validation cohort. Features included demographics, comorbidities, and laboratory and vital signs within 12 hours of hospital admission. RESULTS: A total of 6093 patients (2442 in training and 3651 in external validation) were included in the final cohort. Of the different modeling approaches used, XGBoost without imputation had the highest area under the receiver operating characteristic (AUROC) curve on internal validation (range of 0.93-0.98) and area under the precision-recall curve (AUPRC; range of 0.78-0.82) for all time points. XGBoost without imputation also had the highest test parameters on external validation (AUROC range of 0.85-0.87, and AUPRC range of 0.27-0.54) across all time windows. XGBoost without imputation outperformed all models with higher precision and recall (mean difference in AUROC of 0.04; mean difference in AUPRC of 0.15). Features of creatinine, BUN, and red cell distribution width were major drivers of the model's prediction. CONCLUSIONS: An XGBoost model without imputation for prediction of a composite outcome of either death or dialysis in patients positive for COVID-19 had the best performance, as compared with standard and other machine learning models. PODCAST: This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2021_07_09_CJN17311120.mp3.


Subject(s)
Acute Kidney Injury/therapy , COVID-19/complications , Machine Learning , Renal Dialysis , SARS-CoV-2 , Acute Kidney Injury/mortality , COVID-19/mortality , Hospitalization , Humans
9.
Ren Fail ; 43(1): 1115-1123, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1301248

ABSTRACT

INTRODUCTION: Acute kidney injury (AKI) in coronavirus disease 2019 (COVID-19) patients is associated with poor prognosis. Early prediction and intervention of AKI are vital for improving clinical outcome of COVID-19 patients. As lack of tools for early AKI detection in COVID-19 patients, this study aimed to validate the USCD-Mayo risk score in predicting hospital-acquired AKI in an extended multi-center COVID-19 cohort. METHODS: Five hundred seventy-two COVID-19 patients from Wuhan Tongji Hospital Guanggu Branch, Wuhan Leishenshan Hospital, and Wuhan No. Ninth Hospital was enrolled for this study. Patients who developed AKI or reached an outcome of recovery or death during the study period were included. Predictors were evaluated according to data extracted from medical records. RESULTS: Of all patients, a total of 44 (8%) developed AKI. The UCSD-Mayo risk score achieved excellent discrimination in predicting AKI with the C-statistic of 0.88 (95%CI: 0.84-0.91). Next, we determined the UCSD-Mayo risk score had good overall performance (Nagelkerke R2 = 0.32) and calibration in our cohort. Further analysis showed that the UCSD-Mayo risk score performed well in subgroups defined by gender, age, and several chronic comorbidities. However, the discrimination of the UCSD-Mayo risk score in ICU patients and patients with mechanical ventilation was not good which might be resulted from different risk factors of these patients. CONCLUSIONS: We validated the performance of UCSD-Mayo risk score in predicting hospital-acquired AKI in COVID-19 patients was excellent except for patients from ICU or patients with mechanical ventilation.


Subject(s)
Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , COVID-19/complications , Severity of Illness Index , Acute Kidney Injury/mortality , Adult , Aged , COVID-19/mortality , China/epidemiology , Female , Hospital Mortality , Humans , Male , Middle Aged , Prognosis , Regression Analysis , Retrospective Studies , Risk Factors , SARS-CoV-2
10.
Clin Exp Nephrol ; 25(11): 1203-1214, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1289778

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a severe complication of coronavirus disease-2019 (COVID-19). This study aims to evaluate incidence, risk factors and case-fatality rate of AKI in patients with COVID-19. METHODS: We reviewed the health medical records of 307 consecutive patients with COVID-19 hospitalized at the University Hospital of Modena, Italy. RESULTS: AKI was diagnosed in 69 out of 307 (22.4%) COVID-19 patients. Stages 1, 2, or 3 AKI accounted for 57.9%, 24.6% and 17.3%, respectively. AKI patients had a mean age of 74.7 ± 9.9 years. These patients showed higher serum levels of the main markers of inflammation and higher rate of severe pneumonia than non-AKI patients. Kidney injury was associated with a higher rate of urinary abnormalities including proteinuria (0.44 ± 0.85 vs 0.18 ± 0.29 mg/mg; P = < 0.0001) and microscopic hematuria (P = 0.032) compared to non-AKI patients. Hemodialysis was performed in 7.2% of the subjects and 33.3% of the survivors did not recover kidney function after AKI. Risk factors for kidney injury were age, male sex, CKD and higher non-renal SOFA score. Patients with AKI had a mortality rate of 56.5%. Adjusted Cox regression analysis revealed that COVID-19-associated AKI was independently associated with in-hospital death (hazard ratio [HR] = 4.82; CI 95%, 1.36-17.08) compared to non-AKI patients. CONCLUSION: AKI was a common and harmful consequence of COVID-19. It manifested with urinary abnormalities (proteinuria, microscopic hematuria) and conferred an increased risk for death. Given the well-known short-term sequelae of AKI, prevention of kidney injury is imperative in this vulnerable cohort of patients.


Subject(s)
Acute Kidney Injury/epidemiology , COVID-19/epidemiology , Acute Kidney Injury/diagnosis , Acute Kidney Injury/mortality , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/mortality , Female , Hematuria/epidemiology , Humans , Incidence , Italy/epidemiology , Male , Middle Aged , Prognosis , Proteinuria/epidemiology , Retrospective Studies , Risk Assessment , Risk Factors
11.
Saudi J Kidney Dis Transpl ; 32(1): 84-91, 2021.
Article in English | MEDLINE | ID: covidwho-1278586

ABSTRACT

Patients with more severe cases of coronavirus disease-19 (COVID-19) may be at greater risk for developing acute kidney injury (AKI). The aim of our study was to analyze incidence and outcomes of AKI in critically ill patients with COVID-19. Our study prospectively followed about 198 patients with COVID-19 admitted to intensive care unit (ICU), Al Adan Hospital, Kuwait, for developing AKI and outcomes. Age, gender, nationality, history of hypertension, diabetes mellitus, ischemic heart disease, congestive heart failure, bronchial asthma, and chronic obstructive pulmonary disease were analyzed. The need for mechanical ventilation (MV), extracorporeal membrane oxygenation, inotropes, and medications was recorded. Causes of AKI, indication of dialysis, dialysis modality, dialysis outcomes, and mortality were analyzed. Our study reported that61 out of 198 (30.8%) ICU patients positive for COVID-19, developed AKI according to the Kidney Disease Improving Global Outcomes definition of AKI. Forty-eight out of 61 (79%) patients need continuous renal replacement therapy using continuous venovenous hemodiafiltration. Thirty-seven (61%) out of 61 patients were with severe sepsis syndrome. The most common cause of AKI was sepsis, cytokine storm, hypovolemia, heart failure, MV, and nephrotoxic drugs. Twenty-four patients (39%) out of 61 patients died, and the most common cause of death was sepsis, cytokine storm with respiratory failure, heart failure, and AKI. The outcome of AKI was as follows: six patients (10%) had complete recovery, five patients had partial recovery (8%), and 26 (43%) patients became dialysis dependent. Incidence of AKI is high in ICU COVID-19 patients and is associated with poor outcomes and high mortality. Early detection and specific therapy of kidney changes, including adequate hemodynamic support and avoidance of nephrotoxic drugs, may help to improve critically ill patients with COVID-19.


Subject(s)
Acute Kidney Injury/epidemiology , Acute Kidney Injury/therapy , COVID-19/therapy , Acute Kidney Injury/etiology , Acute Kidney Injury/mortality , Adult , COVID-19/epidemiology , Critical Care , Critical Illness , Female , Humans , Incidence , Kuwait/epidemiology , Male , Middle Aged , Prospective Studies , Risk Factors , SARS-CoV-2 , Sepsis/complications , Survival Rate , Treatment Outcome
12.
BMC Nephrol ; 22(1): 202, 2021 05 31.
Article in English | MEDLINE | ID: covidwho-1249548

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a complication of coronavirus disease 2019 (COVID-19). The reported incidence of AKI, however, varies among studies. We aimed to evaluate the incidence of AKI and its association with mortality and morbidity in children infected with severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) who required hospital admission. METHODS: This was a multicenter retrospective cohort study from three tertiary centers, which included children with confirmed COVID-19. All children were evaluated for AKI using the Kidney Disease Improving Global Outcomes (KDIGO) definition and staging. RESULTS: Of 89 children included, 19 (21 %) developed AKI (52.6 % stage I). A high renal angina index score was correlated with severity of AKI. Also, multisystem inflammatory syndrome in children (MIS-C) was increased in children with AKI compared to those with normal kidney function (15 % vs. 1.5 %). Patients with AKI had significantly more pediatric intensive care admissions (PICU) (32 % vs. 2.8 %, p < 0.001) and mortality (42 % vs. 0 %, p < 0.001). However, AKI was not associated with prolonged hospitalization (58 % vs. 40 %, p = 0.163) or development of MIS-C (10.5 % vs. 1.4 %, p = 0.051). No patient in the AKI group required renal replacement therapy. Residual renal impairment at discharge occurred in 9 % of patients. This was significantly influenced by the presence of comorbidities, hypotension, hypoxia, heart failure, acute respiratory distress, hypernatremia, abnormal liver profile, high C-reactive protein, and positive blood culture. CONCLUSIONS: AKI occurred in one-fifth of children with SARS-CoV-2 infection requiring hospital admission, with one-third of those requiring PICU. AKI was associated with increased morbidity and mortality, and residual renal impairment at time of discharge.


Subject(s)
Acute Kidney Injury/epidemiology , Acute Kidney Injury/virology , COVID-19/complications , Acute Kidney Injury/diagnosis , Acute Kidney Injury/mortality , Child , Child, Preschool , Creatinine/blood , Critical Care , Female , Glomerular Filtration Rate , Humans , Incidence , Length of Stay , Male , Prevalence , Risk Factors , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/complications
13.
Ren Fail ; 43(1): 911-918, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1246489

ABSTRACT

BACKGROUND: Early reports indicate that AKI is common during COVID-19 infection. Different mortality rates of AKI due to SARS-CoV-2 have been reported, based on the degree of organic dysfunction and varying from public to private hospitals. However, there is a lack of data about AKI among critically ill patients with COVID-19. METHODS: We conducted a multicenter cohort study of 424 critically ill adults with severe acute respiratory syndrome (SARS) and AKI, both associated with SARS-CoV-2, admitted to six public ICUs in Brazil. We used multivariable logistic regression to identify risk factors for AKI severity and in-hospital mortality. RESULTS: The average age was 66.42 ± 13.79 years, 90.3% were on mechanical ventilation (MV), 76.6% were at KDIGO stage 3, and 79% underwent hemodialysis. The overall mortality was 90.1%. We found a higher frequency of dialysis (82.7% versus 45.2%), MV (95% versus 47.6%), vasopressors (81.2% versus 35.7%) (p < 0.001) and severe AKI (79.3% versus 52.4%; p = 0.002) in nonsurvivors. MV, vasopressors, dialysis, sepsis-associated AKI, and death (p < 0.001) were more frequent in KDIGO 3. Logistic regression for death demonstrated an association with MV (OR = 8.44; CI 3.43-20.74) and vasopressors (OR = 2.93; CI 1.28-6.71; p < 0.001). Severe AKI and dialysis need were not independent risk factors for death. MV (OR = 2.60; CI 1.23-5.45) and vasopressors (OR = 1.95; CI 1.12-3.99) were also independent risk factors for KDIGO 3 (p < 0.001). CONCLUSION: Critically ill patients with SARS and AKI due to COVID-19 had high mortality in this cohort. Mortality was largely determined by the need for mechanical ventilation and vasopressors rather than AKI severity.


Subject(s)
Acute Kidney Injury/therapy , Acute Kidney Injury/virology , COVID-19/complications , Critical Illness , Renal Dialysis , Acute Kidney Injury/mortality , Aged , Brazil/epidemiology , COVID-19/mortality , COVID-19/therapy , Female , Hospital Mortality , Humans , Intensive Care Units , Male , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Respiration, Artificial , Retrospective Studies , Risk Factors , SARS-CoV-2
14.
Sci Rep ; 11(1): 11134, 2021 05 27.
Article in English | MEDLINE | ID: covidwho-1246397

ABSTRACT

Risk factors associated with severity and mortality attributable to COVID-19 have been reported in different cohorts, highlighting the occurrence of acute kidney injury (AKI) in 25% of them. Among other, SARS-CoV-2 targets renal tubular cells and can cause acute renal damage. The aim of the present study was to evaluate the usefulness of urinary parameters in predicting intensive care unit (ICU) admission, mortality and development of AKI in hospitalized patients with COVID-19. Retrospective observational study, in a tertiary care hospital, between March 1st and April 19th, 2020. We recruited adult patients admitted consecutively and positive for SARS-CoV-2. Urinary and serum biomarkers were correlated with clinical outcomes (AKI, ICU admission, hospital discharge and in-hospital mortality) and evaluated using a logistic regression model and ROC curves. A total of 199 COVID-19 hospitalized patients were included. In AKI, the logistic regression model with a highest area under the curve (AUC) was reached by the combination of urine blood and previous chronic kidney disease, with an AUC of 0.676 (95%CI 0.512-0.840; p = 0.023); urine specific weight, sodium and albumin in serum, with an AUC of 0.837 (95% CI 0.766-0.909; p < 0.001) for ICU admission; and age, urine blood and lactate dehydrogenase levels in serum, with an AUC of 0.923 (95%CI 0.866-0.979; p < 0.001) for mortality prediction. For hospitalized patients with COVID-19, renal involvement and early alterations of urinary and serum parameters are useful as prognostic factors of AKI, the need for ICU admission and death.


Subject(s)
Acute Kidney Injury/mortality , Acute Kidney Injury/urine , COVID-19/mortality , COVID-19/urine , Acute Kidney Injury/complications , Acute Kidney Injury/physiopathology , Adult , Aged , Area Under Curve , Biomarkers/urine , COVID-19/complications , COVID-19/physiopathology , Critical Care , Female , Hospitalization , Humans , Logistic Models , Male , Middle Aged , Observational Studies as Topic , Prognosis , ROC Curve , Retrospective Studies , Risk Factors , Severity of Illness Index , Urine/chemistry
15.
Int Immunopharmacol ; 96: 107794, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1233464

ABSTRACT

To explore the characteristics of COVID-19 infection related kidney injury, we retrospectively collected cases of COVID-19 patients with definite clinical outcomes (discharge or death) and relevant laboratory results from Jan 3 to Mar 30, 2020 in Tongji hospital, Wuhan, China. 1509 patients were included, 1393 cases with normal baseline serum creatinine, and 116 cases with elevated baseline serum creatinine (EBSC). On admission, the prevalence of elevated serum creatinine, elevated blood urea nitrogen (BUN) and estimated glomerular filtration (eGFR) under 60 ml/min/1.73 m2 were 7.7%, 6.6% and 7.2%, respectively. The incidence of in-hospital death in the patients with EBSC was 7.8%, which was significantly higher than those with normal serum creatinine (1.2%). Inflammatory, immunological, and organ damage indices were relatively higher in the EBSC group, in which lymphocytes, albumin, and hemoglobin were significantly lower. Kaplan-Meier analysis revealed age above 65 years, males, comorbidities (especially for cardiovascular disease and tumor patients), lymphocyte count < 1.5 × 109/L, leukocyte count > 10 × 109/L, EBSC, eGFR < 60 ml/min/1.73 m2 were associated with in-hospital death. Multivariate Cox proportional hazard regression confirmed that EBSC (HR: 2.643, 95% CI: 1.111-6.285, P = 0.028), eGFR < 60 ml/min/1.73 m2 (HR: 3.889, 95% CI: 1.634-9.257, P = 0.002), were independent risk factors after adjusting for age, sex, any comorbidity, leukocyte and lymphocyte count. Therefore, the prevalence of kidney injury in patients with COVID-19 was high and associated with in-hospital mortality. Early detection and effective intervention of kidney injury may reduce COVID-19 deaths.


Subject(s)
Acute Kidney Injury/mortality , COVID-19/complications , SARS-CoV-2/physiology , Aged , Cardiovascular Diseases/complications , China , Comorbidity , Creatinine/blood , Creatinine/metabolism , Female , Hospital Mortality , Humans , Inflammation/pathology , Leukocytes/pathology , Lymphocytes/pathology , Male , Middle Aged , Neoplasms/complications , Prognosis , Retrospective Studies , Risk Factors
16.
J Crit Care ; 64: 125-130, 2021 08.
Article in English | MEDLINE | ID: covidwho-1193375

ABSTRACT

BACKGROUND: Outcome for critically ill patients with COVID-19 treated with continuous renal replacement therapy (CRRT) is largely unknown. We describe mortality and renal outcome in this group. METHODS: This observational study was conducted at a university hospital in Sweden. We studied critically ill adult COVID-19 patients with Acute Kidney injury (AKI) who received CRRT. RESULTS: In 451 patients, AKI incidence was 43.7%. 18.2% received CRRT. Median age of CRRT patients was 60 years (IQR 54-65), 90% were male, median BMI was 29 (IQR 25-32), 23.2% had Diabetes, 37.8% hypertension and 6.1% chronic kidney disease prior to admission. 100% required mechanical ventilation. 8.5% received Extra Corporeal Membrane Oxygenation. Median length of stay was 23 days (IQR 15-26). ICU mortality was 39% and 90-day mortality was 45.1%. Age, baseline creatinine values and body weight change were associated with 60 days mortality. Of the survivors, no patients required dialysis at hospital discharge, 73.8% recovered renal function and a median 10.5% of body weight was lost during admission. CONCLUSIONS: Critically ill COVID-19 patients with AKI who received CRRT had a 90-day mortality of 45.1%. At follow-up, three quarters of survivors had recovered renal function. This information is important in the clinical management of COVID-19.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/therapy , COVID-19/complications , COVID-19/therapy , Continuous Renal Replacement Therapy , SARS-CoV-2 , Acute Kidney Injury/mortality , Aged , COVID-19/mortality , Critical Care , Critical Illness , Female , Hospital Mortality , Humans , Male , Middle Aged , Recovery of Function , Survival Analysis , Sweden/epidemiology , Weight Loss
17.
J Nephrol ; 34(2): 295-304, 2021 04.
Article in English | MEDLINE | ID: covidwho-1144428

ABSTRACT

BACKGROUND: Research regarding COVID-19 and acute kidney injury (AKI) in older adults is scarce. We evaluated risk factors and outcomes of AKI in hospitalized older adults with and without COVID-19. METHODS: Observational study of patients admitted to two geriatric clinics in Stockholm from March 1st to June 15th, 2020. The difference in incidence, risk factors and adverse outcomes for AKI between patients with or without COVID-19 were examined. Odds ratios (OR) for the risk of AKI and in-hospital death were obtained from logistic regression. RESULTS: Three hundred-sixteen older patients were hospitalized for COVID-19 and 876 patients for non-COVID-19 diagnoses. AKI occurred in 92 (29%) patients with COVID-19 vs. 159 (18%) without COVID-19. The odds for developing AKI were higher in patients with COVID-19 (adjusted OR, 1.70; 95% confidence interval [CI] 1.04-2.76), low baseline kidney function as depicted by estimated glomerular filtration rate (eGFR) [4.19 (2.48-7.05), for eGFR 30 to < 60 mL/min, and 20.3 (9.95-41.3) for eGFR < 30 mL/min], and higher C reactive protein (CRP) (OR 1.81 (1.11-2.95) in patients with initial CRP > 10 mg/L). Compared to patients without COVID-19 and without AKI, the risk of in-hospital death was highest in patients with COVID-19 and AKI [OR 80.3, 95% CI (27.3-235.6)], followed by COVID-19 without AKI [16.3 (6.28-42.4)], and by patients without COVID-19 and with AKI [10.2 (3.66-28.2)]. CONCLUSIONS: Geriatric patients hospitalized with COVID-19 had a higher incidence of AKI compared to patients hospitalized for other diagnoses. COVID-19 and reduced baseline kidney function were risk factors for developing AKI. AKI and COVID-19 were associated with in-hospital death.


Subject(s)
Acute Kidney Injury/etiology , COVID-19/complications , Pandemics , Risk Assessment/methods , Acute Kidney Injury/mortality , Aged, 80 and over , COVID-19/epidemiology , Female , Hospital Mortality/trends , Humans , Incidence , Male , Retrospective Studies , Risk Factors , Survival Rate/trends , Sweden/epidemiology
18.
BMC Nephrol ; 22(1): 92, 2021 03 15.
Article in English | MEDLINE | ID: covidwho-1136211

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a common manifestation among patients critically ill with SARS-CoV-2 infection (Coronavirus 2019) and is associated with significant morbidity and mortality. The pathophysiology of renal failure in this context is not fully understood, but likely to be multifactorial. The intensive care unit outcomes of patients following COVID-19 acute critical illness with associated AKI have not been fully explored. We conducted a cohort study to investigate the risk factors for acute kidney injury in patients admitted to and intensive care unit with COVID-19, its incidence and associated outcomes. METHODS: We reviewed the medical records of all patients admitted to our adult intensive care unit suffering from SARS-CoV-2 infection from 14th March 2020 until 12th May 2020. Acute kidney injury was defined using the Kidney Disease Improving Global Outcome (KDIGO) criteria. The outcome analysis was assessed up to date as 3rd of September 2020. RESULTS: A total of 81 patients admitted during this period. All patients had acute hypoxic respiratory failure and needed either noninvasive or invasive mechanical ventilatory support. Thirty-six patients (44%) had evidence of AKI (Stage I-33%, Stage II-22%, Renal Replacement Therapy (RRT)-44%). All patients with AKI stage III had RRT. Age, diabetes mellitus, immunosuppression, lymphopenia, high D-Dimer levels, increased APACHE II and SOFA scores, invasive mechanical ventilation and use of inotropic or vasopressor support were significantly associated with AKI. The peak AKI was at day 4 and mean duration of RRT was 12.5 days. The mortality was 25% for the AKI group compared to 6.7% in those without AKI. Among those received RRT and survived their illness, the renal function recovery is complete and back to baseline in all patients. CONCLUSION: Acute kidney injury and renal replacement therapy is common in critically ill patients presenting with COVID-19. It is associated with increased severity of illness on admission to ICU, increased mortality and prolonged ICU and hospital length of stay. Recovery of renal function was complete in all survived patients.


Subject(s)
Acute Kidney Injury/etiology , COVID-19/complications , APACHE , Acute Kidney Injury/epidemiology , Acute Kidney Injury/mortality , Acute Kidney Injury/therapy , COVID-19/epidemiology , Cohort Studies , Critical Illness , Female , Hospital Mortality , Humans , Incidence , Intensive Care Units , Male , Middle Aged , Organ Dysfunction Scores , Recovery of Function , Renal Replacement Therapy/statistics & numerical data , Respiration, Artificial/adverse effects , Risk Factors , Water-Electrolyte Balance
19.
Swiss Med Wkly ; 151: w20482, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1128122

ABSTRACT

BACKGROUND: Data about patients in Europe with corona virus disease-2019 (COVID-19) and acute kidney injury (AKI) are scarce. We examined characteristics, presentation and risk factors of AKI in patients hospitalised with COVID-19 in a tertiary hospital in Switzerland. METHODS: We reviewed health records of patients hospitalised with a positive nasopharyngeal polymerase chain reaction test for SARS-CoV2 between 1 February and 30 June 2020, at the University Hospital of Basel. The nadir creatinine of the hospitalisation was used as baseline. AKI was defined according the KDIGO guidelines as a 1.5× increase of baseline creatinine and in-hospital renal recovery as a discharge creatinine <1.25× baseline creatinine. Least absolute shrinkage and selection operator (LASSO) regression was performed to select predictive variables of AKI. Based on this a final model was chosen. RESULTS: Of 188 patients with COVID-19, 41 (22%) developed AKI, and 11 (6%) required renal replacement therapy. AKI developed after a median of 9 days (interquartile range [IQR] 5-12) after the first symptoms and a median of 1 day (IQR 0-5) after hospital admission. The peak AKI stages were stage 1 in 39%, stage 2 in 24% and stage 3 in 37%. A total of 29 (15%) patients were admitted to the intensive care unit and of these 23 (79%) developed AKI. In-hospital renal recovery at discharge was observed in 61% of all AKI episodes. In-hospital mortality was 27% in patients with AKI and 10% in patients without AKI. Age (adjusted odds ratio [aOR] 1.04, 95% confidence interval [CI] 1.01­1.08; p = 0.024), history of chronic kidney disease (aOR 3.47, 95% CI 1.16­10.49;p = 0.026), C-reactive protein levels (aOR 1.09, 95% CI 1.03­1.06; p = 0.002) and creatinine kinase (aOR 1.03, 95% CI 1.01­1.06; p = 0.002) were associated with development of AKI. CONCLUSIONS: AKI is common in hospitalised patients with COVID-19 and more often seen in patients with severe COVID-19 illness. AKI is associated with a high in-hospital mortality.


Subject(s)
Acute Kidney Injury/etiology , COVID-19/complications , COVID-19/epidemiology , Acute Kidney Injury/mortality , Acute Kidney Injury/pathology , Age Factors , Aged , COVID-19/mortality , COVID-19/pathology , Comorbidity , Creatinine/blood , Female , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Sex Factors , Socioeconomic Factors , Switzerland , Tertiary Care Centers , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...