Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
JCI Insight ; 7(5)2022 03 08.
Article in English | MEDLINE | ID: covidwho-1759583

ABSTRACT

Severe acute lung injury has few treatment options and a high mortality rate. Upon injury, neutrophils infiltrate the lungs and form neutrophil extracellular traps (NETs), damaging the lungs and driving an exacerbated immune response. Unfortunately, no drug preventing NET formation has completed clinical development. Here, we report that disulfiram - an FDA-approved drug for alcohol use disorder - dramatically reduced NETs, increased survival, improved blood oxygenation, and reduced lung edema in a transfusion-related acute lung injury (TRALI) mouse model. We then tested whether disulfiram could confer protection in the context of SARS-CoV-2 infection, as NETs are elevated in patients with severe COVID-19. In SARS-CoV-2-infected golden hamsters, disulfiram reduced NETs and perivascular fibrosis in the lungs, and it downregulated innate immune and complement/coagulation pathways, suggesting that it could be beneficial for patients with COVID-19. In conclusion, an existing FDA-approved drug can block NET formation and improve disease course in 2 rodent models of lung injury for which treatment options are limited.


Subject(s)
Acute Lung Injury/drug therapy , COVID-19/complications , Disulfiram/pharmacology , Extracellular Traps/drug effects , Lung/immunology , SARS-CoV-2 , Acetaldehyde Dehydrogenase Inhibitors/pharmacology , Acute Lung Injury/etiology , Animals , COVID-19/virology , Disease Models, Animal , Extracellular Traps/immunology , Rodentia
2.
Int J Mol Sci ; 23(5)2022 Feb 26.
Article in English | MEDLINE | ID: covidwho-1736945

ABSTRACT

Disruption of the alveolar-endothelial barrier caused by inflammation leads to the progression of septic acute lung injury (ALI). In the present study, we investigated the beneficial effects of simvastatin on the endotoxin lipopolysaccharide (LPS)-induced ALI and its related mechanisms. A model of ALI was induced within experimental sepsis developed by intraperitoneal injection of a single non-lethal LPS dose after short-term simvastatin pretreatment (10-40 mg/kg orally). The severity of the lung tissue inflammatory injury was expressed as pulmonary damage scores (PDS). Alveolar epithelial cell apoptosis was confirmed by TUNEL assay (DNA fragmentation) and expressed as an apoptotic index (AI), and immunohistochemically for cleaved caspase-3, cytochrome C, and anti-apoptotic Bcl-xL, an inhibitor of apoptosis, survivin, and transcriptional factor, NF-kB/p65. Severe inflammatory injury of pulmonary parenchyma (PDS 3.33 ± 0.48) was developed after the LPS challenge, whereas simvastatin significantly and dose-dependently protected lung histology after LPS (p < 0.01). Simvastatin in a dose of 40 mg/kg showed the most significant effects in amelioration alveolar epithelial cells apoptosis, demonstrating this as a marked decrease of AI (p < 0.01 vs. LPS), cytochrome C, and cleaved caspase-3 expression. Furthermore, simvastatin significantly enhanced the expression of Bcl-xL and survivin. Finally, the expression of survivin and its regulator NF-kB/p65 in the alveolar epithelium was in strong positive correlation across the groups. Simvastatin could play a protective role against LPS-induced ALI and apoptosis of the alveolar-endothelial barrier. Taken together, these effects were seemingly mediated by inhibition of caspase 3 and cytochrome C, a finding that might be associated with the up-regulation of cell-survival survivin/NF-kB/p65 pathway and Bcl-xL.


Subject(s)
Acute Lung Injury , NF-kappa B , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Alveolar Epithelial Cells/metabolism , Apoptosis , Caspase 3/genetics , Caspase 3/metabolism , Cytochromes c/metabolism , Endotoxins/adverse effects , Humans , Lipopolysaccharides/toxicity , Lung/pathology , NF-kappa B/metabolism , Simvastatin/adverse effects , Survivin/genetics , Up-Regulation
3.
Mol Med ; 28(1): 27, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1724403

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome, which is a more severe form of ALI, are life-threatening clinical syndromes observed in critically ill patients. Treatment methods to alleviate the pathogenesis of ALI have improved to a great extent at present. Although the efficacy of these therapies is limited, their relevance has increased remarkably with the ongoing pandemic caused by the novel coronavirus disease 2019 (COVID-19), which causes severe respiratory distress syndrome. Several studies have demonstrated the preventive and therapeutic effects of molecular hydrogen in the various diseases. The biological effects of molecular hydrogen mainly involve anti-inflammation, antioxidation, and autophagy and cell death modulation. This review focuses on the potential therapeutic effects of molecular hydrogen on ALI and its underlying mechanisms and aims to provide a theoretical basis for the clinical treatment of ALI and COVID-19.


Subject(s)
Acute Lung Injury/drug therapy , COVID-19/drug therapy , Hydrogen/pharmacology , Protective Agents/pharmacology , Acute Lung Injury/physiopathology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Humans , Sepsis/drug therapy , Sepsis/physiopathology
4.
Bull Exp Biol Med ; 172(4): 423-429, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1696762

ABSTRACT

We studied the lung-protective effect and mechanisms of the anti-inflammatory and antioxidant effects of ultra-short-wave diathermy (USWD) in a rat model of LPS-induced acute lung injury. Histological examination of the lung tissues was performed and the levels of oxidative stress-related factors and inflammatory cytokines were measured. It was shown that the lung injury score, the lung wet-to-dry weight ratio (W/D), oxidative stress-related factors malondialdehyde and acyl-CoA synthetase long-chain family member 4 (ACSL4), and inflammatory cytokines were increased after LPS administration, while USWD treatment reduced these parameters. In addition, superoxide dismutase and glutathione peroxidase 4 were decreased in rats with LPS-induced acute lung injury, while USWD therapy up-regulated the expression of these enzymes. Thus, USWD could antagonize lung injury by inhibiting oxidative stress and inflammatory response in rats with acute lung injury. USWD can be a promising adjunctive treatment to counter oxidative stress and inflammation and a potential therapeutic candidate for the treatment of patients with this pathology.


Subject(s)
Acute Lung Injury , Diathermy , Acute Lung Injury/drug therapy , Acute Lung Injury/therapy , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/metabolism , Humans , Lipopolysaccharides/pharmacology , Lung , Oxidative Stress , Radio Waves , Rats
5.
Antimicrob Agents Chemother ; 66(3): e0212521, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1636300

ABSTRACT

Severe illness caused by coronavirus disease 2019 (COVID-19) is characterized by an overexuberant inflammatory response resulting in acute respiratory distress syndrome (ARDS) and progressive respiratory failure (A. Gupta, M. V. Madhavan, K. Sehgal, N. Nair, et al., Nat Med 26:1017-1032, 2020, https://doi.org/10.1038/s41591-020-0968-3). Rhesus theta (θ) defensin-1 (RTD-1) is a macrocyclic host defense peptide exhibiting antimicrobial and immunomodulatory activities. RTD-1 treatment significantly improved survival in murine models of a severe acute respiratory syndrome (SARS-CoV-1) and endotoxin-induced acute lung injury (ALI) (C. L. Wohlford-Lenane, D. K. Meyerholz, S. Perlman, H. Zhou, et al., J Virol 83:11385-11390, 2009, https://doi.org/10.1128/JVI.01363-09; J. G. Jayne, T. J. Bensman, J. B. Schaal, A. Y. J. Park, et al., Am J Respir Cell Mol Biol 58:310-319, 2018, https://doi.org/10.1165/rcmb.2016-0428OC). This investigation aimed to characterize the preclinical pharmacokinetics (PK) and safety of intravenous (i.v.) RTD-1. Based on the lack of adverse findings, the no observed adverse effect level (NOAEL) was established at 10 mg/kg/day in rats and 15 mg/kg/day in monkeys. Analysis of single ascending dose studies in both species revealed greater-than-dose-proportional increases in the area under the curve extrapolated to infinity (AUC0-∞) (e.g., 8-fold increase from 5 mg/kg to 20 mg/kg in rats) suggestive of nonlinear PK. The volume of distribution at steady state (Vss) ranged between 550 and 1,461 mL/kg, indicating extensive tissue distribution, which was validated in a biodistribution study of [14C]RTD-1 in rats. Based on interspecies allometric scaling, the predicted human clearance and Vss are 6.48 L/h and 28.0 L, respectively, for an adult (70 kg). To achieve plasma exposures associated with therapeutic efficacy established in a murine model of ALI, the estimated human equivalent dose (HED) is between 0.36 and 0.83 mg/kg/day. The excellent safety profile demonstrated in these studies and the efficacy observed in the murine models support the clinical investigation of RTD-1 for treatment of COVID-19 or other pulmonary inflammatory diseases.


Subject(s)
Acute Lung Injury , COVID-19 , Acute Lung Injury/drug therapy , Animals , COVID-19/drug therapy , Defensins/pharmacology , Mice , Rats , Tissue Distribution
6.
Pharmacol Res ; 176: 106083, 2022 02.
Article in English | MEDLINE | ID: covidwho-1638968

ABSTRACT

The pathogenic hyper-inflammatory response has been revealed as the major cause of the severity and death of the Corona Virus Disease 2019 (COVID-19). Xuanfei Baidu Decoction (XFBD) as one of the "three medicines and three prescriptions" for the clinically effective treatment of COVID-19 in China, shows unique advantages in the control of symptomatic transition from moderate to severe disease states. However, the roles of XFBD to against hyper-inflammatory response and its mechanism remain unclear. Here, we established acute lung injury (ALI) model induced by lipopolysaccharide (LPS), presenting a hyperinflammatory process to explore the pharmacodynamic effect and molecular mechanism of XFBD on ALI. The in vitro experiments demonstrated that XFBD inhibited the secretion of IL-6 and TNF-α and iNOS activity in LPS-stimulated RAW264.7 macrophages. In vivo, we confirmed that XFBD improved pulmonary injury via down-regulating the expression of proinflammatory cytokines such as IL-6, TNF-α and IL1-ß as well as macrophages and neutrophils infiltration in LPS-induced ALI mice. Mechanically, we revealed that XFBD treated LPS-induced acute lung injury through PD-1/IL17A pathway which regulates the infiltration of neutrophils and macrophages. Additionally, one major compound from XFBD, i.e. glycyrrhizic acid, shows a high binding affinity with IL17A. In conclusion, we demonstrated the therapeutic effects of XFBD, which provides the immune foundations of XFBD and fatherly support its clinical applications.


Subject(s)
Acute Lung Injury/drug therapy , Drugs, Chinese Herbal/pharmacology , Interleukin-17/metabolism , Macrophages/drug effects , Neutrophils/drug effects , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction/drug effects , Acute Lung Injury/metabolism , Animals , COVID-19/drug therapy , COVID-19/metabolism , Cell Line , China , Cytokines/metabolism , Leukocyte Count/methods , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Neutrophils/metabolism , RAW 264.7 Cells
7.
J Med Chem ; 65(4): 2971-2987, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1616927

ABSTRACT

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one of the most common complications in COVID-19. Elastase has been recognized as an important target to prevent ALI/ARDS in the patient of COVID-19. Cyclotheonellazole A (CTL-A) is a natural macrocyclic peptide reported to be a potent elastase inhibitor. Herein, we completed the first total synthesis of CTL-A in 24 linear steps. The key reactions include three-component MAC reactions and two late-stage oxidations. We also provided seven CTL-A analogues and elucidated preliminary structure-activity relationships. The in vivo ALI mouse model further suggested that CTL-A alleviated acute lung injury with reductions in lung edema and pathological deterioration, which is better than sivelestat, one approved elastase inhibitor. The activity of CTL-A against elastase, along with its cellular safety and well-established synthetic route, warrants further investigation of CTL-A as a candidate against COVID-19 pathogeneses.


Subject(s)
Acute Lung Injury/drug therapy , Leukocyte Elastase/antagonists & inhibitors , Peptides, Cyclic/pharmacology , Respiratory Distress Syndrome/drug therapy , Serine Proteinase Inhibitors/pharmacology , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Animals , Bleomycin , COVID-19/drug therapy , COVID-19/metabolism , COVID-19/pathology , Cell Line , Disease Models, Animal , Humans , Leukocyte Elastase/metabolism , Male , Mice , Mice, Inbred C57BL , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/metabolism , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/chemistry
8.
Immun Inflamm Dis ; 10(2): 123-129, 2022 02.
Article in English | MEDLINE | ID: covidwho-1565191

ABSTRACT

INTRODUCTION: Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury (ALI) resulting in life-threatening hypoxaemia. Although ARDS can be caused by a variety of pathogens or major trauma, it is best known as the major cause of mortality in COVID-19 patients. Since ARDS is often associated with dysregulated inflammatory immune responses, immunomodulatory approaches represent a possible treatment option. The objective of this study was to evaluate the therapeutic potential of interleukin (IL)-1 blockade using Anakinra in a mouse model of lipopolysaccharide (LPS)-induced ALI. METHODS: We evaluated the effects of a daily subcutaneous Anakinra treatment in a mouse model of LPS-induced ALI. We monitored body weight to assess the general health status of the mice. Two days after ALI induction, we evaluated the inflammatory cytokine MIP-2 as well as protein levels in bronchoalveolar lavage (BAL) fluids. Two and nine days after ALI induction, we evaluated infiltrating leukocytes in BAL fluid and lung tissue. RESULTS: Anakinra treatment reduced ALI-induced weight loss compared to nontreated groups. At Day 2, Anakinra treatment reduced levels of MIP-2 and protein in BAL fluids and reduced frequencies of NK cells and neutrophils in the lung tissue. Nine days after ALI induction, Anakinra treated mice displayed reduced levels of neutrophils and alveolar macrophages in BAL fluids. CONCLUSIONS: IL-1 blockade using Anakinra reduced classical hallmarks of inflammation in a mouse model of ALI. Our data support ongoing and future research on the evaluation of Anakinra as a potential treatment option in ARDS.


Subject(s)
Acute Lung Injury , COVID-19 , Pneumonia , Acute Lung Injury/drug therapy , Animals , Humans , Interleukin 1 Receptor Antagonist Protein , Mice , SARS-CoV-2
9.
Viral Immunol ; 34(10): 679-688, 2021 12.
Article in English | MEDLINE | ID: covidwho-1560640

ABSTRACT

The newfound coronavirus disease 2019 (COVID-19), initiated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an international public health concern, threatening the lives of millions of people worldwide. The virus seems to have a propensity to infect older males, especially those with underlying diseases. The cytokine storm following hyperactivated immune responses due to SARS-CoV-2 infection is probably the crucial source of severe pneumonia that leads to acute lung injury, systemic inflammatory response syndrome, or acute respiratory distress syndrome, and finally multiple organ dysfunction syndromes, as well as death in many cases. Several studies revealed that interleukin (IL)-1ß levels were elevated during COVID-19 infection. In addition, the IL-1 cytokine family has a pivotal role in the induction of cytokine storm due to uncontrolled immune responses in COVID-19 infection. This article reviews the role of IL-1 in inflammation and utilization of IL-1 inhibitor agents in controlling the inflammatory outcomes initiated by SARS-CoV-2 infection.


Subject(s)
COVID-19/drug therapy , COVID-19/immunology , Cytokine Release Syndrome/drug therapy , Interleukin-1/immunology , Acute Lung Injury/drug therapy , Acute Lung Injury/immunology , Acute Lung Injury/pathology , COVID-19/mortality , COVID-19/pathology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Humans , Interleukin-1/antagonists & inhibitors , Multiple Organ Failure/drug therapy , Multiple Organ Failure/immunology , Multiple Organ Failure/pathology , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
10.
PLoS One ; 16(11): e0260450, 2021.
Article in English | MEDLINE | ID: covidwho-1528732

ABSTRACT

Acute lung injury (ALI) is a specific form of lung damage caused by different infectious and non-infectious agents, including SARS-CoV-2, leading to severe respiratory and systemic inflammation. To gain deeper insight into the molecular mechanisms behind ALI and to identify core elements of the regulatory network associated with this pathology, key genes involved in the regulation of the acute lung inflammatory response (Il6, Ccl2, Cat, Serpine1, Eln, Timp1, Ptx3, Socs3) were revealed using comprehensive bioinformatics analysis of whole-genome microarray datasets, functional annotation of differentially expressed genes (DEGs), reconstruction of protein-protein interaction networks and text mining. The bioinformatics data were validated using a murine model of LPS-induced ALI; changes in the gene expression patterns were assessed during ALI progression and prevention by anti-inflammatory therapy with dexamethasone and the semisynthetic triterpenoid soloxolone methyl (SM), two agents with different mechanisms of action. Analysis showed that 7 of 8 revealed ALI-related genes were susceptible to LPS challenge (up-regulation: Il6, Ccl2, Cat, Serpine1, Eln, Timp1, Socs3; down-regulation: Cat) and their expression was reversed by the pre-treatment of mice with both anti-inflammatory agents. Furthermore, ALI-associated nodal genes were analysed with respect to SARS-CoV-2 infection and lung cancers. The overlap with DEGs identified in postmortem lung tissues from COVID-19 patients revealed genes (Saa1, Rsad2, Ifi44, Rtp4, Mmp8) that (a) showed a high degree centrality in the COVID-19-related regulatory network, (b) were up-regulated in murine lungs after LPS administration, and (c) were susceptible to anti-inflammatory therapy. Analysis of ALI-associated key genes using The Cancer Genome Atlas showed their correlation with poor survival in patients with lung neoplasias (Ptx3, Timp1, Serpine1, Plaur). Taken together, a number of key genes playing a core function in the regulation of lung inflammation were found, which can serve both as promising therapeutic targets and molecular markers to control lung ailments, including COVID-19-associated ALI.


Subject(s)
Acute Lung Injury/genetics , COVID-19/genetics , Genetic Loci , Lung Neoplasms/genetics , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Animals , Anti-Inflammatory Agents/therapeutic use , COVID-19/pathology , Computational Biology , Gene Regulatory Networks , Genetic Predisposition to Disease , Humans , Lung Neoplasms/pathology , Mice
11.
J Ethnopharmacol ; 285: 114838, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1509996

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Keguan-1, a new traditional Chinese medicine (TCM) prescription contained seven Chinese herbs, is developed to treat coronavirus disease 19 (COVID-19). The first internationally registered COVID-19 randomised clinical trial on integrated therapy demonstrated that Keguan-1 significantly reduced the incidence of ARDS and inhibited the severe progression of COVID-19. AIM OF THE STUDY: To investigate the protective mechanism of Keguan-1 on ARDS, a lipopolysaccharide (LPS)-induced acute lung injury (ALI) model was used to simulate the pathological state of ARDS in patients with COVID-19, focusing on its effect and mechanism on ALI. MATERIALS AND METHODS: Mice were challenged with LPS (2 mg/kg) by intratracheal instillation (i.t.) and were orally administered Keguan-1 (low dose, 1.25 g/kg; medium dose, 2.5 g/kg; high dose, 5 g/kg) after 2 h. Bronchoalveolar lavage fluid (BALF) and lung tissue were collected 6 h and 24 h after i.t. administration of LPS. The levels of inflammatory factors tumour necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1ß, keratinocyte-derived chemokine (KC or mCXCL1), macrophage inflammatory protein 2 (MIP2 or mCXCL2), angiotensin II (Ang II), and endothelial cell junction-associated proteins were analysed using ELISA or western blotting. RESULTS: Keguan-1 improved the survival rate, respiratory condition, and pathological lung injury; decreased the production of proinflammatory factors (TNF-α, IL-6, IL-1ß, KC, and MIP2) in BALF and the number of neutrophils in the lung tissues; and ameliorated inflammatory injury in the lung tissues of the mice with LPS-induced ALI. Keguan-1 also reduced the expression of Ang II and the adhesion molecule ICAM-1; increased tight junction proteins (JAM-1 and claudin-5) and VE-cadherin expression; and alleviated pulmonary vascular endothelial injury in LPS-induced ALI. CONCLUSION: These results demonstrate that Keguan-1 can improve LPS-induced ALI by reducing inflammation and pulmonary vascular endothelial injury, providing scientific support for the clinical treatment of patients with COVID-19. Moreover, it also provides a theoretical basis and technical support for the scientific use of TCMs in emerging infectious diseases.


Subject(s)
Acute Lung Injury , Antiviral Agents/pharmacology , Bronchoalveolar Lavage Fluid , COVID-19 , Drugs, Chinese Herbal/pharmacology , Lung , Acute Lung Injury/drug therapy , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Animals , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , COVID-19/complications , COVID-19/immunology , COVID-19/virology , Capsules , Chemokine CXCL2/analysis , Coix , Forsythia , Interleukin-1beta/analysis , Interleukin-6/analysis , Lonicera , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/virology , Mice , Mortality , Morus , Peptide Fragments/analysis , Prunus armeniaca , Respiration/drug effects , SARS-CoV-2 , Treatment Outcome , Tumor Necrosis Factor-alpha/analysis
12.
J Immunol Res ; 2021: 4414544, 2021.
Article in English | MEDLINE | ID: covidwho-1443671

ABSTRACT

COVID-19 is a respiratory infection caused by the SARS-CoV-2 virus that can rapidly escalate to life-threatening pneumonia and acute respiratory distress syndrome (ARDS). Recently, extracellular high mobility group box 1 (HMGB1) has been identified as an essential component of cytokine storms that occur with COVID-19; HMGB1 levels correlate significantly with disease severity. Thus, the modulation of HMGB1 release may be vital for treating COVID-19. HMGB1 is a ubiquitous nuclear DNA-binding protein whose biological function depends on posttranslational modifications, its redox state, and its cellular localization. The acetylation of HMGB1 is a prerequisite for its translocation from the nucleus to the cytoplasm and then to the extracellular milieu. When released, HMGB1 acts as a proinflammatory cytokine that binds primarily to toll-like receptor 4 (TLR4) and RAGE, thereby stimulating immune cells, endothelial cells, and airway epithelial cells to produce cytokines, chemokines, and other inflammatory mediators. In this study, we demonstrate that inhaled [D-Ala2]-dynorphin 1-6 (leytragin), a peptide agonist of δ-opioid receptors, significantly inhibits HMGB1 secretion in mice with lipopolysaccharide- (LPS-) induced acute lung injury. The mechanism of action involves preventing HMGB1's hyperacetylation at critical lysine residues within nuclear localization sites, as well as promoting the expression of sirtuin 1 (SIRT1), an enzyme known to deacetylate HMGB1. Leytragin's effects are mediated by opioid receptors, since naloxone, an antagonist of opioid receptors, abrogates the leytragin effect on SIRT1 expression. Overall, our results identify leytragin as a promising therapeutic agent for the treatment of pulmonary inflammation associated with HMGB1 release. In a broader context, we demonstrate that the opioidergic system in the lungs may represent a promising target for the treatment of inflammatory lung diseases.


Subject(s)
Acute Lung Injury/drug therapy , Dynorphins/pharmacology , HMGB1 Protein/metabolism , Acetylation , Acute Lung Injury/metabolism , Animals , COVID-19/drug therapy , COVID-19/metabolism , Disease Models, Animal , Mice , Mice, Inbred C57BL , Receptors, Opioid/metabolism , Sirtuin 1/metabolism
13.
Front Endocrinol (Lausanne) ; 11: 569241, 2020.
Article in English | MEDLINE | ID: covidwho-1389156

ABSTRACT

The clinical hallmarks of infections caused by critical respiratory viruses consist of pneumonia, which can progress to acute lung injury (ALI), and systemic manifestations including hypercoagulopathy, vascular dysfunction, and endotheliitis. The disease outcome largely depends on the immune response produced by the host. The bio-molecular mechanisms underlying certain dire consequences of the infection partly arise from an aberrant production of inflammatory molecules, an event denoted as "cytokine storm". Therefore, in addition to antiviral therapies, molecules able to prevent the injury caused by cytokine excess are under investigation. In this perspective, taking advantage of melanocortin peptides and their receptors, components of an endogenous modulatory system that exerts marked anti-inflammatory and immunomodulatory influences, could be an effective therapeutic strategy to control disease evolution. Exploiting the melanocortin system using natural or synthetic ligands can form a realistic basis to counteract certain deleterious effects of respiratory virus infections. The central and peripheral protective actions exerted following melanocortin receptor activation could allow dampening the harmful events that trigger the cytokine storm and endothelial dysfunction while sustaining the beneficial signals required to elicit repair mechanisms. The long standing evidence for melanocortin safety encourages this approach.


Subject(s)
COVID-19/drug therapy , Receptors, Melanocortin/agonists , Respiratory Tract Infections/drug therapy , Acute Lung Injury/drug therapy , Animals , Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Cytokines/metabolism , Humans , Melanocyte-Stimulating Hormones/metabolism , Respiratory Tract Infections/etiology , Respiratory Tract Infections/metabolism
14.
Pharmacol Res ; 163: 105224, 2021 01.
Article in English | MEDLINE | ID: covidwho-1364404

ABSTRACT

Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.


Subject(s)
Acute Lung Injury/drug therapy , Lung/drug effects , Phytochemicals/pharmacology , Respiratory Distress Syndrome/drug therapy , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Humans , Lung/metabolism , Lung/pathology , Phytochemicals/isolation & purification , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Signal Transduction
15.
J Control Release ; 337: 14-26, 2021 09 10.
Article in English | MEDLINE | ID: covidwho-1306406

ABSTRACT

Acute lung injury (ALI) is a critical inflammatory syndrome, characterized by increased diffuse inflammation and severe lung damage, which represents a clinical concern due to the high morbidity and mortality in critical patients. In last years, there has been a need to develop more effective treatments for ALI, and targeted drug delivery to inflamed lungs has become an attractive research field. Here, we present a nanodevice based on mesoporous silica nanoparticles loaded with dexamethasone (a glucocorticoid extensively used for ALI treatment) and capped with a peptide that targets the TNFR1 receptor expressed in pro-inflammatory macrophages (TNFR-Dex-MSNs) and avoids cargo leakage. TNFR-Dex-MSNs nanoparticles are preferentially internalized by pro-inflammatory macrophages, which overexpressed the TNFR1 receptor, with the subsequent cargo release upon the enzymatic hydrolysis of the capping peptide in lysosomes. Moreover, TNFR-Dex-MSNs are able to reduce the levels of TNF-α and IL-1ß cytokines in activated pro-inflammatory M1 macrophages. The anti-inflammatory effect of TNFR-Dex-MSNs is also tested in an in vivo ALI mice model. The administered nanodevice (intravenously by tail vein injection) accumulated in the injured lungs and the controlled dexamethasone release reduces markedly the inflammatory response (TNF-α IL-6 and IL-1ß levels). The attenuation in lung damage, after treatment with TNFR-Dex-MSNs, is also confirmed by histopathological studies. Besides, the targeted-lung dexamethasone delivery results in a decrease of dexamethasone derived side-effects, suggesting that targeted nanoparticles can be used for therapy in ALI and could help to overcome the clinical limitations of current treatments.


Subject(s)
Acute Lung Injury , Nanoparticles , Acute Lung Injury/drug therapy , Animals , Dexamethasone , Humans , Lung , Mice , Silicon Dioxide
16.
Phytomedicine ; 90: 153635, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1275633

ABSTRACT

BACKGROUND: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening diseases and could occur in severe COVID-19 patients. Re-Du-Ning injection (RDN) is a tradition Chinese medicine preparation which has been clinically used for treatment of respiratory diseases including COVID-19. PURPOSE: To elucidate the potential mechanisms of RDN for the treatment of ALI. METHODS: Female C57BL/6J mice were used to establish ALI model by intraperitoneal injection 10 mg/kg LPS, and RDN injection was intraperitoneally administered with the dose of 5 and 10 ml/kg. The cytokines were measured by ELISA and qPCR. The data related to NETs were analyzed by ELISA, immunofluorescence, Western blotting and network pharmacological approach. RESULTS: RDN robustly alleviated LPS-induced ALI. Meanwhile, RDN downregulated the expression of pro-inflammatory cytokines, such as IL-1ß, IL-6 and TNF-α. Specifically, RDN treatment inhibited the formation of neutrophil extracellular traps (NETs) and remarkably suppressed the protein of PAD4. The active compound from RDN decreased the phosphorylation of ERK1/2. CONCLUSION: These findings demonstrate that RDN ameliorates LPS-induced ALI through suppressing MAPK pathway to inhibit the formation of NETs.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal/pharmacology , Extracellular Traps , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Animals , Female , Lipopolysaccharides , Lung , Mice , Mice, Inbred C57BL
17.
Int J Mol Sci ; 22(11)2021 May 24.
Article in English | MEDLINE | ID: covidwho-1273453

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common and devastating clinical disorders with high mortality and no specific therapy. Lipopolysaccharide (LPS) is usually used intratracheally to induce ALI in mice. The aim of this study was to examine the effects of an ultramicronized preparation of palmitoylethanolamide (um-PEA) in mice subjected to LPS-induced ALI. Histopathological analysis reveals that um-PEA reduced alteration in lung after LPS intratracheal administration. Besides, um-PEA decreased wet/dry weight ratio and myeloperoxidase, a marker of neutrophils infiltration, macrophages and total immune cells number and mast cells degranulation in lung. Moreover, um-PEA could also decrease cytokines release of interleukin (IL)-6, interleukin (IL)-1ß, tumor necrosis factor (TNF)-α and interleukin (IL)-18. Furthermore, um-PEA significantly inhibited the phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation in ALI, and at the same time decreased extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38/MAPK) expression, that was increased after LPS administration. Our study suggested that um-PEA contrasted LPS-induced ALI, exerting its potential role as an adjuvant anti-inflammatory therapeutic for treating lung injury, maybe also by p38/NF-κB pathway.


Subject(s)
Acute Lung Injury/drug therapy , Amides/pharmacology , Cytokines/metabolism , Ethanolamines/pharmacology , MAP Kinase Signaling System/drug effects , Palmitic Acids/pharmacology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Amides/therapeutic use , Animals , Ethanolamines/therapeutic use , Immunohistochemistry , Inflammation/metabolism , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/toxicity , Macrophages/drug effects , Macrophages/immunology , Male , Mast Cells/drug effects , Mast Cells/pathology , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Neutrophils/drug effects , Neutrophils/immunology , Palmitic Acids/therapeutic use , Peroxidase/metabolism , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
18.
J Nanobiotechnology ; 19(1): 56, 2021 Feb 25.
Article in English | MEDLINE | ID: covidwho-1114088

ABSTRACT

BACKGROUND: Uncontrolled inflammation is a central problem for many respiratory diseases. The development of potent, targeted anti-inflammatory therapies to reduce lung inflammation and re-establish the homeostasis in the respiratory tract is still a challenge. Previously, we developed a unique anti-inflammatory nanodrug, P12 (made of hexapeptides and gold nanoparticles), which can attenuate Toll-like receptor-mediated inflammatory responses in macrophages. However, the effect of the administration route on its therapeutic efficacy and tissue distribution remained to be defined. RESULTS: In this study, we systematically compared the effects of three different administration routes [the intratracheal (i.t.), intravenous (i.v.) and intraperitoneal (i.p.)] on the therapeutic activity, biodistribution and pulmonary cell targeting features of P12. Using the LPS-induced ALI mouse model, we found that the local administration route via i.t. instillation was superior in reducing lung inflammation than the other two routes even treated with a lower concentration of P12. Further studies on nanoparticle biodistribution showed that the i.t. administration led to more accumulation of P12 in the lungs but less in the liver and other organs; however, the i.v. and i.p. administration resulted in more nanoparticle accumulation in the liver and lymph nodes, respectively, but less in the lungs. Such a lung favorable distribution was also determined by the unique surface chemistry of P12. Furthermore, the inflammatory condition in the lung could decrease the accumulation of nanoparticles in the lung and liver, while increasing their distribution in the spleen and heart. Interestingly, the i.t. administration route helped the nanoparticles specifically target the lung macrophages, whereas the other two administration routes did not. CONCLUSION: The i.t. administration is better for treating ALI using nanodevices as it enhances the bioavailability and efficacy of the nanodrugs in the target cells of the lung and reduces the potential systematic side effects.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Gold/pharmacology , Lung/metabolism , Macrophages, Alveolar/drug effects , Metal Nanoparticles/chemistry , Pneumonia/drug therapy , Acute Lung Injury/drug therapy , Animals , Cytokines , Disease Models, Animal , Lipopolysaccharides/adverse effects , Lung/pathology , Macrophages, Alveolar/metabolism , Male , Mice , Mice, Inbred C57BL , Pneumonia/pathology , Tissue Distribution
19.
Int J Mol Sci ; 22(10)2021 May 15.
Article in English | MEDLINE | ID: covidwho-1236794

ABSTRACT

Acute lung injury (ALI) afflicts approximately 200,000 patients annually and has a 40% mortality rate. The COVID-19 pandemic has massively increased the rate of ALI incidence. The pathogenesis of ALI involves tissue damage from invading microbes and, in severe cases, the overexpression of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß). This study aimed to develop a therapy to normalize the excess production of inflammatory cytokines and promote tissue repair in the lipopolysaccharide (LPS)-induced ALI. Based on our previous studies, we tested the insulin-like growth factor I (IGF-I) and BTP-2 therapies. IGF-I was selected, because we and others have shown that elevated inflammatory cytokines suppress the expression of growth hormone receptors in the liver, leading to a decrease in the circulating IGF-I. IGF-I is a growth factor that increases vascular protection, enhances tissue repair, and decreases pro-inflammatory cytokines. It is also required to produce anti-inflammatory 1,25-dihydroxyvitamin D. BTP-2, an inhibitor of cytosolic calcium, was used to suppress the LPS-induced increase in cytosolic calcium, which otherwise leads to an increase in proinflammatory cytokines. We showed that LPS increased the expression of the primary inflammatory mediators such as toll like receptor-4 (TLR-4), IL-1ß, interleukin-17 (IL-17), TNF-α, and interferon-γ (IFN-γ), which were normalized by the IGF-I + BTP-2 dual therapy in the lungs, along with improved vascular gene expression markers. The histologic lung injury score was markedly elevated by LPS and reduced to normal by the combination therapy. In conclusion, the LPS-induced increases in inflammatory cytokines, vascular injuries, and lung injuries were all improved by IGF-I + BTP-2 combination therapy.


Subject(s)
Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Anilides/pharmacology , Cytokines/metabolism , Gene Expression Regulation/drug effects , Insulin-Like Growth Factor I/pharmacology , Thiadiazoles/pharmacology , Acute Lung Injury/pathology , Acute Lung Injury/virology , Anilides/therapeutic use , Animals , COVID-19/complications , Calcium/metabolism , Calcium Channels/metabolism , Cytokines/genetics , Disease Models, Animal , Female , Gene Expression Regulation/genetics , Immunohistochemistry , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/therapeutic use , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lipopolysaccharides/toxicity , Mice , Mice, Inbred C57BL , Signal Transduction/drug effects , Signal Transduction/genetics , Thiadiazoles/therapeutic use , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
20.
Heart Lung Circ ; 30(6): 786-794, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1217564

ABSTRACT

The severe acute respiratory syndrome coronavirus (SARS-CoV)-2, which is responsible for coronavirus disease 2019 (COVID-19), uses angiotensin (ANG)-converting enzyme 2 (ACE2) as the entrance receptor. Although most COVID-19 cases are mild, some are severe or critical, predominantly due to acute lung injury. It has been widely accepted that a counter regulatory renin-angiotensin system (RAS) axis including the ACE2/ANG [1-7]/Mas protects the lungs from acute lung injury. However, recent evidence suggests that the generation of protective ANG [1-7] in the lungs is predominantly mediated by proinflammatory prolyl oligopeptidase (POP), which has been repeatedly demonstrated to be involved in lung pathology. This review contends that acute lung injury in severe COVID-19 is characterised by a) ACE2 downregulation and malfunction (inflammatory signalling) due to viral occupation, and b) dysregulation of the protective RAS axis, predominantly due to increased activity of proinflammatory POP. It follows that a reasonable treatment strategy in COVID-19-related acute lung injury would be delivering functional recombinant (r) ACE2 forms to trap the virus. Additionally, or alternatively to rACE2 delivery, the potential benefits resulting from lowering POP activity should also be explored. These treatment strategies deserve further investigation.


Subject(s)
Acute Lung Injury , Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Renin-Angiotensin System/immunology , Signal Transduction , Acute Lung Injury/drug therapy , Acute Lung Injury/immunology , COVID-19/metabolism , COVID-19/physiopathology , COVID-19/virology , Down-Regulation , Drug Discovery , Humans , SARS-CoV-2/physiology , Signal Transduction/drug effects , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL