Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Scand J Immunol ; 95(1): e13108, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1462877

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) remains a global health emergency, and understanding the interactions between the virus and host immune responses is crucial to preventing its lethal effects. The expansion of myeloid-derived suppressor cells (MDSCs) in COVID-19, thereby suppressing immune responses, has been described as responsible for the severity of the disease, but the correlation between MDSC subsets and COVID-19 severity remains elusive. Therefore, we classified patients according to clinical and laboratory findings-aiming to investigate the relationship between MDSC subsets and laboratory findings such as high C-reactive protein, ferritin and lactate dehydrogenase levels, which indicate the severity of the disease. Forty-one patients with COVID-19 (26 mild and 15 severe; mean age of 49.7 ± 15 years) and 26 healthy controls were included in this study. MDSCs were grouped into two major subsets-polymorphonuclear MDSCs (PMN-MDSCs) and monocytic MDSCs-by flow cytometric immunophenotyping, and PMN-MDSCs were defined as mature and immature, according to CD16 expressions, for the first time in COVID-19. Total MDSCs, PMN-MDSCs, mature PMN-MDSCs and monocytic MDSCs were significantly higher in patients with COVID-19 compared with the healthy controls (P < .05). Only PMN-MDSCs and their immature PMN-MDSC subsets were higher in the severe subgroup than in the mild subgroup. In addition, a significant correlation was found between C-reactive protein, ferritin and lactate dehydrogenase levels and MDSCs in patients with COVID-19. These findings suggest that MDSCs play a role in the pathogenesis of COVID-19, while PMN-MDSCs, especially immature PMN-MDSCs, are associated with the severity of the disease.


Subject(s)
Acute-Phase Proteins/metabolism , C-Reactive Protein/metabolism , COVID-19/metabolism , Ferritins/blood , L-Lactate Dehydrogenase/blood , Myeloid-Derived Suppressor Cells/immunology , SARS-CoV-2/physiology , Adult , Aged , COVID-19/immunology , Case-Control Studies , Disease Progression , Female , Humans , Male , Middle Aged , Prospective Studies , Severity of Illness Index , Young Adult
3.
CPT Pharmacometrics Syst Pharmacol ; 10(12): 1497-1511, 2021 12.
Article in English | MEDLINE | ID: covidwho-1449945

ABSTRACT

This study aimed to determine whether published pharmacokinetic (PK) models can adequately predict the PK profile of imatinib in a new indication, such as coronavirus disease 2019 (COVID-19). Total (bound + unbound) and unbound imatinib plasma concentrations obtained from 134 patients with COVID-19 participating in the CounterCovid study and from an historical dataset of 20 patients with gastrointestinal stromal tumor (GIST) and 85 patients with chronic myeloid leukemia (CML) were compared. Total imatinib area under the concentration time curve (AUC), maximum concentration (Cmax ) and trough concentration (Ctrough ) were 2.32-fold (95% confidence interval [CI] 1.34-3.29), 2.31-fold (95% CI 1.33-3.29), and 2.32-fold (95% CI 1.11-3.53) lower, respectively, for patients with CML/GIST compared with patients with COVID-19, whereas unbound concentrations were comparable among groups. Inclusion of alpha1-acid glycoprotein (AAG) concentrations measured in patients with COVID-19 into a previously published model developed to predict free imatinib concentrations in patients with GIST using total imatinib and plasma AAG concentration measurements (AAG-PK-Model) gave an estimated mean (SD) prediction error (PE) of -20% (31%) for total and -7.0% (56%) for unbound concentrations. Further covariate modeling with this combined dataset showed that in addition to AAG; age, bodyweight, albumin, CRP, and intensive care unit admission were predictive of total imatinib oral clearance. In conclusion, high total and unaltered unbound concentrations of imatinib in COVID-19 compared to CML/GIST were a result of variability in acute phase proteins. This is a textbook example of how failure to take into account differences in plasma protein binding and the unbound fraction when interpreting PK of highly protein bound drugs, such as imatinib, could lead to selection of a dose with suboptimal efficacy in patients with COVID-19.


Subject(s)
Acute-Phase Proteins/metabolism , COVID-19/blood , COVID-19/drug therapy , Imatinib Mesylate/blood , Protein Kinase Inhibitors/blood , Aged , Aged, 80 and over , Female , Humans , Imatinib Mesylate/therapeutic use , Male , Middle Aged , Protein Binding/drug effects , Protein Binding/physiology , Protein Kinase Inhibitors/therapeutic use
4.
Front Immunol ; 12: 708149, 2021.
Article in English | MEDLINE | ID: covidwho-1337643

ABSTRACT

Microbial translocation (MT) and intestinal damage (ID) are poorly explored in COVID-19. Aims were to assess whether alteration of gut permeability and cell integrity characterize COVID-19 patients, whether it is more pronounced in severe infections and whether it influences the development of subsequent bloodstream infection (BSI). Furthermore, we looked at the potential predictive role of TM and ID markers on Intensive Care Unit (ICU) admission and in-hospital mortality. Over March-July 2020, 45 COVID-19 patients were enrolled. Markers of MT [LPB (Lipopolysacharide Binding Protein) and EndoCab IgM] and ID [I-FABP (Intestinal Fatty Acid Binding Protein)] were evaluated at COVID-19 diagnosis and after 7 days. As a control group, age- and gender-matched healthy donors (HDs) enrolled during the same study period were included. Median age was 66 (56-71) years. Twenty-one (46.6%) were admitted to ICU and mortality was 22% (10/45). Compared to HD, a high degree of MT and ID was observed. ICU patients had higher levels of MT, but not of ID, than non-ICU ones. Likewise, patients with BSI had lower EndoCab IgM than non-BSI. Interestingly, patients with high degree of MT and low ID were likely to be admitted to ICU (AUC 0.822). Patients with COVID-19 exhibited high level of MT, especially subjects admitted to ICU. COVID-19 is associated with gut permeability.


Subject(s)
COVID-19/metabolism , Intestinal Mucosa/metabolism , SARS-CoV-2/physiology , Acute-Phase Proteins/metabolism , Aged , Biomarkers/metabolism , COVID-19/diagnosis , COVID-19/mortality , COVID-19/pathology , Carrier Proteins/metabolism , Disease Progression , Fatty Acid-Binding Proteins/metabolism , Female , Humans , Intensive Care Units , Intestinal Mucosa/pathology , Male , Membrane Glycoproteins/metabolism , Middle Aged , Predictive Value of Tests , Prognosis , Survival Analysis , Tight Junctions/metabolism
5.
J Intern Med ; 289(4): 523-531, 2021 04.
Article in English | MEDLINE | ID: covidwho-796040

ABSTRACT

BACKGROUND: A high proportion of COVID-19 patients have cardiac involvement, even those without known cardiac disease. Downregulation of angiotensin converting enzyme 2 (ACE2), a receptor for SARS-CoV-2 and the renin-angiotensin system, as well as inflammatory mechanisms have been suggested to play a role. ACE2 is abundant in the gut and associated with gut microbiota composition. We hypothesized that gut leakage of microbial products, and subsequent inflammasome activation could contribute to cardiac involvement in COVID-19 patients. METHODS: Plasma levels of a gut leakage marker (LPS-binding protein, LBP), a marker of enterocyte damage (intestinal fatty acid binding protein, IFABP), a gut homing marker (CCL25, ligand for chemokine receptor CCR9) and markers of inflammasome activation (IL-1ß, IL-18 and their regulatory proteins) were measured at three time points (day 1, 3-5 and 7-10) in 39 hospitalized COVID-19 patients and related to cardiac involvement. RESULTS: Compared to controls, COVID-19 patients had elevated plasma levels of LBP and CCL25 but not IFABP, suggesting impaired gut barrier function and accentuated gut homing of T cells without excessive enterocyte damage. Levels of LBP were twice as high at baseline in patients with elevated cardiac markers compared with those without and remained elevated during hospitalization. Also, markers of inflammasome activation were moderately elevated in patients with cardiac involvement. LBP was associated with higher NT-pro-BNP levels, whereas IL-18, IL-18BP and IL-1Ra were associated with higher troponin levels. CONCLUSION: Patients with cardiac involvement had elevated markers of gut leakage and inflammasome activation, suggestive of a potential gut-heart axis in COVID-19.


Subject(s)
COVID-19 , Chemokines, CC/metabolism , Gastrointestinal Microbiome/immunology , Heart Diseases , Inflammasomes/metabolism , Intestinal Mucosa , SARS-CoV-2 , Acute-Phase Proteins/metabolism , COVID-19/complications , COVID-19/immunology , Carrier Proteins/metabolism , Correlation of Data , Heart Diseases/immunology , Heart Diseases/virology , Humans , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/physiopathology , Membrane Glycoproteins/metabolism , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Troponin/blood
SELECTION OF CITATIONS
SEARCH DETAIL