Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Clin Virol ; 150-151: 105159, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1851455

ABSTRACT

BACKGROUND: Chronic hepatitis B virus (HBV) treatment consists of nucleos(t)ide analogues to suppress viral replication. The HBV inhibitor tenofovir has a high barrier to resistance, however, evidence of virus-escape is emerging. This study investigates HBV evolution in patients undergoing tenofovir treatment with the primary aim to assess the emergence of putative resistance mutations. METHODS: HBV DNA was extracted from blood samples of two patients with HBeAg-positive chronic HBV infection and persistent viremia despite tenofovir treatment, and subsequently amplified by PCR before full-length HBV genomes were assembled by deep sequencing. The mutation linkage within the viral population was evaluated by clonal analysis of amplicons. RESULTS: Sequence analysis of HBV, derived from 11 samples collected 2010-2020 from one patient, identified 12 non-synonymous single-nucleotide polymorphisms (SNPs) emerging during a tenofovir treatment interruption from 2014 to 2017. Two of the SNPs were in the reverse transcriptase (RT; H35Q and D263E). The two RT mutations were linked and persisted despite restarting tenofovir treatment in 2017. For the second patient, we analyzed HBV derived from six samples collected 2014-2020 following 10 years of tenofovir treatment, and identified five non-synonymous SNPs, that confer resistance towards entecavir and/or lamivudine. Two RT mutations (H35N and P237T) emerged during subsequent 5-year entecavir treatment. H35N was maintained during final tenofovir treatment. CONCLUSIONS: Our findings indicate that changes at the conserved residue 35 (H35N/Q) in the HBV RT may be associated with tenofovir resistance. These variants have not previously been described, and further studies are warranted to assess resistance in vitro and in vivo.


Subject(s)
Hepatitis B, Chronic , Organophosphonates , Adenine/adverse effects , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , DNA, Viral/genetics , Drug Resistance, Viral/genetics , Hepatitis B virus/genetics , Hepatitis B, Chronic/drug therapy , Humans , Mutation , Organophosphonates/therapeutic use , RNA-Directed DNA Polymerase/genetics , Tenofovir/pharmacology , Tenofovir/therapeutic use , Viremia/drug therapy
2.
EBioMedicine ; 74: 103705, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1540597

ABSTRACT

BACKGROUND: Patients with immunocompromised disorders have mainly been excluded from clinical trials of vaccination against COVID-19. Thus, the aim of this prospective clinical trial was to investigate safety and efficacy of BNT162b2 mRNA vaccination in five selected groups of immunocompromised patients and healthy controls. METHODS: 539 study subjects (449 patients and 90 controls) were included. The patients had either primary (n=90), or secondary immunodeficiency disorders due to human immunodeficiency virus infection (n=90), allogeneic hematopoietic stem cell transplantation/CAR T cell therapy (n=90), solid organ transplantation (SOT) (n=89), or chronic lymphocytic leukemia (CLL) (n=90). The primary endpoint was seroconversion rate two weeks after the second dose. The secondary endpoints were safety and documented SARS-CoV-2 infection. FINDINGS: Adverse events were generally mild, but one case of fatal suspected unexpected serious adverse reaction occurred. 72.2% of the immunocompromised patients seroconverted compared to 100% of the controls (p=0.004). Lowest seroconversion rates were found in the SOT (43.4%) and CLL (63.3%) patient groups with observed negative impact of treatment with mycophenolate mofetil and ibrutinib, respectively. INTERPRETATION: The results showed that the mRNA BNT162b2 vaccine was safe in immunocompromised patients. Rate of seroconversion was substantially lower than in healthy controls, with a wide range of rates and antibody titres among predefined patient groups and subgroups. This clinical trial highlights the need for additional vaccine doses in certain immunocompromised patient groups to improve immunity. FUNDING: Knut and Alice Wallenberg Foundation, the Swedish Research Council, Nordstjernan AB, Region Stockholm, Karolinska Institutet, and organizations for PID/CLL-patients in Sweden.


Subject(s)
/adverse effects , Immunocompromised Host/immunology , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Adenine/adverse effects , Adenine/analogs & derivatives , Adenine/therapeutic use , Antibodies, Viral/blood , COVID-19/prevention & control , Female , Hematopoietic Stem Cell Transplantation , Humans , Immunotherapy, Adoptive , Leukemia, Lymphocytic, Chronic, B-Cell , Male , Middle Aged , Mycophenolic Acid/adverse effects , Mycophenolic Acid/therapeutic use , Organ Transplantation , Piperidines/adverse effects , Piperidines/therapeutic use , Primary Immunodeficiency Diseases/immunology , Prospective Studies , Seroconversion , Spike Glycoprotein, Coronavirus/immunology , Vaccination/adverse effects
3.
Sci Rep ; 11(1): 19998, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1462031

ABSTRACT

Understanding the effects of metabolism on the rational design of novel and more effective drugs is still a considerable challenge. To the best of our knowledge, there are no entirely computational strategies that make it possible to predict these effects. From this perspective, the development of such methodologies could contribute to significantly reduce the side effects of medicines, leading to the emergence of more effective and safer drugs. Thereby, in this study, our strategy is based on simulating the electron ionization mass spectrometry (EI-MS) fragmentation of the drug molecules and combined with molecular docking and ADMET models in two different situations. In the first model, the drug is docked without considering the possible metabolic effects. In the second model, each of the intermediates from the EI-MS results is docked, and metabolism occurs before the drug accesses the biological target. As a proof of concept, in this work, we investigate the main antiviral drugs used in clinical research to treat COVID-19. As a result, our strategy made it possible to assess the biological activity and toxicity of all potential by-products. We believed that our findings provide new chemical insights that can benefit the rational development of novel drugs in the future.


Subject(s)
Antiviral Agents/metabolism , COVID-19/drug therapy , Drug Discovery , SARS-CoV-2/drug effects , Adenine/adverse effects , Adenine/analogs & derivatives , Adenine/metabolism , Adenine/pharmacology , Adenosine/adverse effects , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/pharmacology , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Alanine/adverse effects , Alanine/analogs & derivatives , Alanine/metabolism , Alanine/pharmacology , Amides/adverse effects , Amides/metabolism , Amides/pharmacology , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , COVID-19/metabolism , Chloroquine/adverse effects , Chloroquine/analogs & derivatives , Chloroquine/metabolism , Chloroquine/pharmacology , Drug Design , Humans , Metabolic Networks and Pathways , Molecular Docking Simulation , Nitro Compounds/adverse effects , Nitro Compounds/metabolism , Nitro Compounds/pharmacology , Pyrazines/adverse effects , Pyrazines/metabolism , Pyrazines/pharmacology , Pyrrolidines/adverse effects , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , Ribavirin/adverse effects , Ribavirin/metabolism , Ribavirin/pharmacology , SARS-CoV-2/metabolism , Thiazoles/adverse effects , Thiazoles/metabolism , Thiazoles/pharmacology
5.
Expert Rev Hematol ; 14(9): 819-830, 2021 09.
Article in English | MEDLINE | ID: covidwho-1349725

ABSTRACT

INTRODUCTION: Ibrutinib is a highly effective drug for patients with chronic lymphocytic leukemia (CLL), and is well tolerated even by older patients and those unfit to receive conventional immuno-chemotherapy. AREAS COVERED: The occurrence of adverse events was revealed as a major cause of ibrutinib failure in the real-world. Ibrutinib-induced lymphocytosis carries the risk of an untimely interruption of therapy because it may be misinterpreted as disease progression. In addition, drug interactions can worsen ibrutinib-associated toxicities by increasing the plasma concentration of ibrutinib. In this review, we present a case of major hemorrhage and atrial fibrillation (AF) during ibrutinib use and summarize the adverse events associated with ibrutinib. Furthermore, the practical management of ibrutinib-associated toxicities was covered with reference to a drug interaction mechanism. EXPERT OPINION: Clinicians should examine the prescribed drugs prior to ibrutinib initiation and carefully monitor toxicities while taking ibrutinib. A reduced dose of ibrutinib with the concurrent use of CYP3A inhibitors such as antifungal agents could be an attractive strategy to reduce toxicities and may confer financial benefits. Reducing unexpected toxicities is as significant as achieving treatment response in the era of life-long therapy with ibrutinib in patients with CLL.


Subject(s)
Adenine/analogs & derivatives , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Piperidines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Adenine/adverse effects , Adenine/pharmacology , Adenine/therapeutic use , Aged , COVID-19/complications , Disease Management , Drug Interactions , Drug-Related Side Effects and Adverse Reactions/etiology , Drug-Related Side Effects and Adverse Reactions/therapy , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Male , Piperidines/adverse effects , Piperidines/pharmacology , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacology
6.
Ren Fail ; 43(1): 335-339, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1078673

ABSTRACT

The introduction of Bruton's tyrosine kinase inhibitor ibrutinib has made a significant progress in the treatment of chronic lymphocytic leukemia and other B-cell malignancies. Due to the reduction of cytokine release, it is effective in chronic graft-versus-host disease, and its use has also been suggested in autoimmune diseases and in prevention of COVID-19-associated lung damage. Despite this effect on the immune response, we report a severe hypersensitivity reaction in a 76-year-old male patient diagnosed with prolymphocytic leukemia. Four weeks after the ibrutinib start, non-oliguric acute kidney injury with proteinuria and microscopic hematuria developed and that was accompanied by lower limb purpuras and paresthesia. Renal biopsy revealed acute interstitial nephritis. Employing 1 mg/kg methylprednisolone administration, serum creatinine decreased from 365 µmol/L to 125 µmol/L at 11 days and the proteinuria-hematuria as well as the purpura, paresthesia resolved. Three months later at stabile eGFR of 56 ml/min/1.73 m2 methylprednisolone was withdrawn and a rituximab-venetoclax treatment was initiated without side effects. We conclude that despite the beneficial effect on cytokines response in Th1 direction, ibrutinib can cause acute interstitial nephritis. Early detection, discontinuation of ibrutinib, glucocorticoid administration may help to better preserve renal function, thereby lowering the risk of potential subsequent kidney injury.


Subject(s)
Acute Kidney Injury/chemically induced , Adenine/analogs & derivatives , Nephritis, Interstitial/chemically induced , Piperidines/adverse effects , Proteinuria/chemically induced , Acute Kidney Injury/drug therapy , Adenine/adverse effects , Aged , Cytokines/drug effects , Glucocorticoids/therapeutic use , Humans , Kidney/pathology , Leukemia, Prolymphocytic/drug therapy , Male , Nephritis, Interstitial/drug therapy , Protein Kinase Inhibitors , Proteinuria/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL