Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Science ; 376(6596): 906-907, 2022 05 27.
Article in English | MEDLINE | ID: covidwho-1865138
2.
Microbiol Spectr ; 9(2): e0083121, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1476399

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has infected all age groups and disproportionately impacted vulnerable populations globally. Polymicrobial infections may play an important role in the development of SARS-CoV-2 infection in susceptible hosts. These coinfections may increase the risk of disease severity and pose challenges to the diagnosis, treatment, and prognosis of COVID-19. There have been limited SARS-CoV-2 coinfection studies. In this retrospective study, residual nucleic acid extracts from 796 laboratory-confirmed COVID-19-positive specimens, collected between March 2020 and February 2021, were analyzed using a Luminex NxTAG respiratory pathogen panel (RPP). Of these, 745 returned valid results and were used for analysis; 53 (7.1%) were positive for one or more additional pathogens. Six different respiratory viruses were detected among the 53 SARS-CoV-2-positive patient specimens, and 7 of those specimens tested positive for more than one additional respiratory virus. The most common pathogens include rhinovirus/enterovirus (RV/EV) (n = 22, 41.51%), human metapneumovirus (hMPV) (n = 18, 33.9%), and adenovirus (n = 12, 22.6%). Interestingly, there were no SARS-CoV-2 coinfections involving influenza A or influenza B in the study specimens. The median age of the SARS-CoV-2-positive patients with coinfections was 38 years; 53% identified as female, and 47% identified as male. Based on our retrospective analysis, respiratory coinfections associated with SARS-CoV-2-positive patients were more common in young children (≤9 years old), with white being the most common race. Our findings will likely prompt additional investigation of polymicrobial infection associated with SARS-CoV-2 during seasonal respiratory pathogen surveillance by public health laboratories. IMPORTANCE This examination of respiratory pathogen coinfections in SARS-CoV-2 patients will likely shed light on our understanding of polymicrobial infection associated with COVID-19. Our results should prompt public health authorities to improve seasonal respiratory pathogen surveillance practices and address the risk of disease severity.


Subject(s)
COVID-19/complications , Coinfection/virology , Respiratory Tract Infections/complications , Respiratory Tract Infections/virology , Adenoviridae/genetics , Adenoviridae/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Child , Enterovirus/genetics , Enterovirus/isolation & purification , Female , Humans , Male , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Middle Aged , Retrospective Studies , Rhinovirus/genetics , Rhinovirus/isolation & purification , SARS-CoV-2/genetics , Wisconsin , Young Adult
3.
Arch Virol ; 166(11): 3085-3092, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1391877

ABSTRACT

Adenovirus, respiratory syncytial virus, and influenza virus are common causes of respiratory infections. The COVID-19 pandemic had a significant impact on their prevalence. The aim of this study was to analyze the epidemic changes of common respiratory viruses in the Affiliated Hospital of Hangzhou Normal University in Hangzhou, China, from October of 2017 to February of 2021. We collected statistics from 121,529 patients in the outpatient and inpatient departments of the hospital who had throat or nose swabs collected for testing for four virus antigens by the colloidal gold method. Of these, 13,200 (10.86%) were positive for influenza A virus, 8,402 (6.91%) were positive for influenza B virus, 6,056 (4.98%) were positive for adenovirus, and 4,739 (3.90%) were positive for respiratory syncytial virus. The positivity rates of the influenza A virus (0-14 years old, P = 0.376; over 14 years old, P = 0.197) and respiratory syncytial virus (0-14 years old, P = 0.763; over 14 years old, P = 0.465) did not differ significantly by gender. After January of 2020, influenza virus infection decreased significantly. The positivity rate of respiratory syncytial virus remained high, and its epidemic season was similar to before. Strict respiratory protection and regulation of crowd activities have a great impact on the epidemic characteristics of viruses. After major changes in the public health environment, virus epidemics and their mutations should be monitored closely, extensively, and continuously.


Subject(s)
Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Adenoviridae/isolation & purification , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/prevention & control , Child , Child, Preschool , China/epidemiology , Female , Humans , Infant , Infant, Newborn , Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Male , Middle Aged , Prevalence , Respiratory Syncytial Virus, Human/isolation & purification , SARS-CoV-2 , Seasons , Sex Factors , Young Adult
6.
Virus Genes ; 56(1): 99-103, 2020 Feb.
Article in English | MEDLINE | ID: covidwho-827576

ABSTRACT

Bats are carriers of potentially zoonotic viruses, therefore it is crucial to identify viruses currently found in bats to better understand how they are maintained in bat populations and evaluate risks for transmission to other species. Adenoviruses have been previously detected in bats throughout the world, but sampling is still limited. In this study, 30 pooled-guano samples were collected from a cave roost of Myotis velifer in Oklahoma. A portion of the DNA polymerase gene from Adenoviridae was amplified successfully in 18 M. velifer samples; however, DNA sequence was obtained from only 6 of these M. velifer samples. One was collected in October 2016, one in March 2017, and 4 in July 2017. The October and March samples contained viral DNA that was 3.1% different from each other but 33% different than the novel viral sequence found in the July 2017 samples. Phylogenetic analysis of these fragments confirmed our isolates were from the genus Mastadenovirus and had genetic diversity ranging from 20 to 50% when compared to other bat adenoviruses.


Subject(s)
Adenoviridae/isolation & purification , Chiroptera/virology , Adenoviridae/classification , Adenoviridae/genetics , Animals , Caves , Genetic Variation , Oklahoma , Phylogeny
7.
Eur Rev Med Pharmacol Sci ; 24(17): 9196-9201, 2020 09.
Article in English | MEDLINE | ID: covidwho-790182

ABSTRACT

OBJECTIVE: The aim of this study is to find the distributions of pathogens in 164 suspected COVID-19 patients from the outpatient clinic of Shenjing Hospital of China Medical University from 24th January, 2020, to 29th February of 2020. PATIENTS AND METHODS: 164 COVID-19 suspected patients were from the Shengjing Hospital of China Medical University. Oropharyngeal swab specimens were acquired by respiratory doctors under standardized conditions. Specific nucleic acids of SARS-CoV-2, influenza A and B, respiratory syncytial virus A and B, adenovirus, parainfluenza virus, along with pneumonic mycoplasma were detected by real-time fluorescence PCR. Symptomatic, epidemiologic, laboratory and radiological data of the patients were obtained from the electronic medical record system of our hospital. RESULTS: Among the 164 patients, 3 were positive for SARS-CoV-2, 15 were positive for other respiratory viruses and 16 were positive for pneumonic mycoplasma. Of the positive patients above, 1 patient was co-infected with SARS-CoV-2 and adenovirus, and 1 was co-infected with influenza B and pneumonic mycoplasma. The 3 SARS-CoV-2 infected patients were clinically diagnosed as COVID-19 because they meet the diagnostic criteria listed in "Chinese Clinical Guidance for COVID-19 Pneumonia diagnosis and treatment", including epidemic history, symptom and pathogenic detection, as well as abnormalities of the laboratory and radiological data. However, the clinical characteristics of COVID-19 patients were non-specific compared to those of the patients infected with other respiratory viruses. CONCLUSIONS: The endemic common respiratory pathogens are more prevalent than SARS-CoV-2 in the SARS-CoV-2 non-epidemic areas of this research. Detection of the pathogen is the unique means for definite COVID-19 diagnosis.


Subject(s)
Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Adenoviridae/genetics , Adenoviridae/isolation & purification , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Humans , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenzavirus B/genetics , Influenzavirus B/isolation & purification , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Thorax/diagnostic imaging , Tomography, X-Ray Computed
8.
Int J Legal Med ; 134(4): 1271-1274, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-378237

ABSTRACT

In the setting of the coronavirus disease 2019 (COVID-19) pandemic, only few data regarding lung pathology induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is available, especially without medical intervention interfering with the natural evolution of the disease. We present here the first case of forensic autopsy of a COVID-19 fatality occurring in a young woman, in the community. Diagnosis was made at necropsy and lung histology showed diffuse alveolar damage, edema, and interstitial pneumonia with a geographically heterogeneous pattern, mostly affecting the central part of the lungs. This death related to COVID-19 pathology highlights the heterogeneity and severity of central lung lesions after natural evolution of the disease.


Subject(s)
Betacoronavirus , Coronavirus Infections/pathology , Lung/pathology , Pneumonia, Viral/pathology , Adenoviridae/genetics , Adenoviridae/isolation & purification , Adult , Autopsy , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Bocavirus/genetics , Bocavirus/isolation & purification , C-Reactive Protein/analysis , COVID-19 , Coronavirus/genetics , Coronavirus/isolation & purification , Female , Humans , Influenzavirus A/genetics , Influenzavirus A/isolation & purification , Influenzavirus B/genetics , Influenzavirus B/isolation & purification , Macrophages/pathology , Megakaryocytes/pathology , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Neutrophils/pathology , Obesity, Morbid , Pandemics , Procalcitonin/blood , Real-Time Polymerase Chain Reaction , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , Rhinovirus/genetics , Rhinovirus/isolation & purification , SARS-CoV-2 , Switzerland , T-Lymphocytes/pathology
SELECTION OF CITATIONS
SEARCH DETAIL