Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add filters

Document Type
Year range
1.
Probl Endokrinol (Mosk) ; 67(6): 98-112, 2021 10 22.
Article in English | MEDLINE | ID: covidwho-1622866

ABSTRACT

Adipose tissue mostly composed of different types of fat is one of the largest endocrine organs in the body playing multiple intricate roles including but not limited to energy storage, metabolic homeostasis, generation of heat, participation in immune functions and secretion of a number of biologically active factors known as adipokines. The most abundant of them is adiponectin. This adipocite-derived hormone exerts pleiotropic actions and exhibits insulin-sensitizing, antidiabetic, anti-obesogenic, anti-inflammatory, antiatherogenic, cardio- and neuroprotective properties. Contrariwise to its protective effects against various pathological events in different cell types, adiponectin may have links to several systemic diseases and malignances. Reduction in adiponectin levels has an implication in COVID-19-associated respiratory failure, which is attributed mainly to a phenomenon called 'adiponectin paradox'. Ample evidence about multiple functions of adiponectin in the body was obtained from animal, mostly rodent studies. Our succinct review is entirely about multifaceted roles of adiponectin and mechanisms of its action in different physiological and pathological states.


Subject(s)
Adiponectin , COVID-19 , Adipokines , Adipose Tissue , Animals , Humans , SARS-CoV-2
2.
Cells ; 10(12)2021 12 08.
Article in English | MEDLINE | ID: covidwho-1597185

ABSTRACT

Beta-3 adrenergic receptor activation via exercise or CL316,243 (CL) induces white adipose tissue (WAT) browning, improves glucose tolerance, and reduces visceral adiposity. Our aim was to determine if sex or adipose tissue depot differences exist in response to CL. Daily CL injections were administered to diet-induced obese male and female mice for two weeks, creating four groups: male control, male CL, female control, and female CL. These groups were compared to determine the main and interaction effects of sex (S), CL treatment (T), and WAT depot (D). Glucose tolerance, body composition, and energy intake and expenditure were assessed, along with perigonadal (PGAT) and subcutaneous (SQAT) WAT gene and protein expression. CL consistently improved glucose tolerance and body composition. Female PGAT had greater protein expression of the mitochondrial uncoupling protein 1 (UCP1), while SQAT (S, p < 0.001) was more responsive to CL in increasing UCP1 (S×T, p = 0.011) and the mitochondrial biogenesis induction protein, PPARγ coactivator 1α (PGC1α) (S×T, p = 0.026). Females also displayed greater mitochondrial OXPHOS (S, p < 0.05) and adiponectin protein content (S, p < 0.05). On the other hand, male SQAT was more responsive to CL in increasing protein levels of PGC1α (S×T, p = 0.046) and adiponectin (S, p < 0.05). In both depots and in both sexes, CL significantly increased estrogen receptor beta (ERß) and glucose-related protein 75 (GRP75) protein content (T, p < 0.05). Thus, CL improves systemic and adipose tissue-specific metabolism in both sexes; however, sex differences exist in the WAT-specific effects of CL. Furthermore, across sexes and depots, CL affects estrogen signaling by upregulating ERß.


Subject(s)
Adipose Tissue, Brown/metabolism , HSP70 Heat-Shock Proteins/genetics , Membrane Proteins/genetics , PPAR gamma/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Uncoupling Protein 1/genetics , Adipose Tissue/metabolism , Adipose Tissue, Brown/growth & development , Adipose Tissue, White/metabolism , Animals , Body Composition/genetics , Dioxoles/pharmacology , Energy Metabolism/genetics , Estrogen Receptor beta/genetics , Estrogens/genetics , Estrogens/metabolism , Female , Glucose Tolerance Test , Humans , Male , Mice , Mitochondria/genetics , Mitochondria/metabolism , Receptors, Adrenergic, beta-3/genetics , Receptors, Adrenergic, beta-3/metabolism , Sex Characteristics
3.
Obes Facts ; 15(1): 90-98, 2022.
Article in English | MEDLINE | ID: covidwho-1571513

ABSTRACT

INTRODUCTION: Neuropilin 1 (NRP-1) is a novel co-receptor promoting SARS-CoV-2 infectivity. Animal data indicate a role in trans-endothelial lipid transport and storage. As human data are sparse, we aimed to assess the role of NRP-1 in 2 metabolic active tissues in human obesity and in the context of weight loss-induced short- and long-term metabolic changes. METHODS: After a standardized 12-week weight reduction program, 143 subjects (age >18; body mass index ≥27 kg/m2, 78% female) were randomized to a 12-month lifestyle intervention or a control group using a stratified randomization scheme. This was followed by 6-month follow-up without any intervention. Phenotyping was performed before and after weight loss, after 12-month intervention and after subsequent 6 months of follow-up. Tissue-specific insulin sensitivity was estimated by HOMA-IR (whole body and mostly driven by liver), insulin sensitivity index (ISI)Clamp (predominantly skeletal muscle), and free fatty acid (FFA) suppression during hyperinsulinemic-euglycemic clamp (FFASupp) (predominantly adipose tissue). NRP-1 mRNA expression was measured in subcutaneous adipose tissue (NRP-1AT) and skeletal muscle (NRP-1SM) before and after weight loss. RESULTS: NRP-1 was highly expressed in adipose tissue (7,893 [7,303-8,536] counts), but neither NRP-1AT nor NRP-1SM were related to estimates of obesity. Higher NRP-1AT was associated with stronger FFASupp (r = -0.343, p = 0.003) and a tendency to higher ISIClamp (r = 0.202, p = 0.085). Weight loss induced a decline of NRP-1AT but not NRP-1SM. This was more pronounced in subjects with stronger reduction of adipose ACE-2 mRNA expression (r = 0.250; p = 0.032) but was not associated with short- and long-term improvement of FFASupp and ISIClamp. CONCLUSION: NRP-1AT is related to adipose insulin sensitivity in obesity. Weight loss-induced decline of NRP-1AT seems not to be involved in metabolic short- and long-term improvements after weight loss. However, weight loss-induced reduction of both NRP-1AT and ACE-2AT indicates a lower susceptibility of adipose tissue for SARS-CoV-2 after body weight reduction.


Subject(s)
COVID-19 , Insulin Resistance , Adipose Tissue , Female , Humans , Male , Neuropilin-1/genetics , Obesity/genetics , RNA, Messenger , SARS-CoV-2 , Weight Loss
4.
Acta Neurol Scand ; 145(1): 119-122, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1570446

ABSTRACT

BACKGROUND: Mesenchymal stem cells are expected to have a therapeutic effect on progressive neurodegenerative diseases for which there is currently no fundamental treatment. AIMS OF THE STUDY: The aim is to confirm that repeated infusion of autologous adipose tissue-derived stem cells (ADSCs) can be safely administered to patients with Parkinson's disease, and to investigate the effects of this as a pilot study. METHODS: Three patients with Parkinson's disease received five or six repeated infusions of ADSCs at intervals of approximately one month. Observations were based on medical examinations by a neurologist and interviews with the patient and caregivers. The severity of Parkinson's disease was assessed using the Hoehn & Yahr staging scale and Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). RESULTS: No adverse events were observed during the observation period from the start of treatment to six months after the end of the last dose. MDS-UPDRS improved in all three patients. CONCLUSIONS: Repeated administration of Autologous ADSCs for Parkinson's disease was safe and feasible. The results of this pilot study provide insight into the value of further research.


Subject(s)
Parkinson Disease , Adipose Tissue , Humans , Parkinson Disease/therapy , Pilot Projects , Stem Cells , Transplantation, Autologous
6.
Surg Obes Relat Dis ; 16(12): 1910-1918, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1454528

ABSTRACT

BACKGROUND: Bariatric surgery is well established as a treatment for obesity and associated complications. This procedure improves metabolic homeostasis through changes in energy expenditure. We hypothesized that sleeve gastrectomy (SG) improves metabolic homeostasis by modulating energy expenditure and enhancing thermogenesis through increasing the expression level of meteorin-like protein (METRNL) and fibronectin type III domain-containing protein 5 (FNDC5/Irisin) through uncoupling proteins 1/2/3 (UCP1, UCP2, and UCP3). OBJECTIVES: To study the effect of SG on the levels of proteins involved in thermogenesis process. SETTING: Laboratory rats at Kuwait University. METHODS: Male Sprague-Dawley rats, aged 4 to 5 weeks, were divided into 2 groups, control (n = 11) and diet-induced obesity (DIO) (n = 22). The control group was fed regular rat chow ad libitum, whereas the DIO group was fed cafeteria diet "high-fat/carbohydrate diet" ad libitum. At 21 weeks, rats in the DIO group that weighed 20% more than the control group animals underwent surgery. These rats were randomly subdivided into Sham and SG operation groups. Gene expression was evaluated, and enzyme-linked immunosorbent assays were employed to assess the changes in gene and protein levels in tissue and circulation. RESULTS: The protein expression data revealed an increase in METRNL levels in the muscles and white adipose tissue of SG animals. METRNL level in circulation in SG animals was reduced compared with control and Sham rats. The level of Irisin increased in the muscle of SG animals compared with the control and Sham group animals; however, a decrease in Irisin level was observed in the white adipose tissue and brown adipose tissue of SG animals compared with controls. Gene expression analysis revealed decreased METRNL levels in muscle tissues in the SG group compared with the control group animals. Increased expression of FNDC5 (Irisin), UCP2, and UCP3 in the muscle tissue of SG animals was also observed. Furthermore, the levels of UCP1, UCP2, UCP3, and METRNL in the brown adipose tissue of SG animals were upregulated. No significant alteration in the gene expression of Irisin was observed in brown adipose tissue. CONCLUSIONS: Sleeve gastrectomy induces weight loss through complex mechanisms that may include browning of fat.


Subject(s)
Adipose Tissue, Brown , Obesity , Adipose Tissue/metabolism , Animals , Diet , Fibronectins/genetics , Fibronectins/metabolism , Gastrectomy , Kuwait , Male , Mitochondrial Uncoupling Proteins , Muscles/metabolism , Obesity/genetics , Obesity/surgery , Rats , Rats, Sprague-Dawley
7.
Kardiologiia ; 61(8): 48-53, 2021 Aug 31.
Article in English | MEDLINE | ID: covidwho-1436434

ABSTRACT

Aim    High sensitive troponin (hs-TnI) levels may increase secondary to Coronavirus disease-2019 (COVID-19), and this increase is associated with cardiovascular mortality in COVID-19 patients. Epicardial adipose tissue (EAT) is associated with myocardial injury directly as a reservoir tissue for coronavirus, and indirectly through mediators it secretes as an apocrine gland. We aimed to evaluate the relationship between myocardial injury secondary to COVID-19 infection and EAT thickness.Material and methods    Thoracic computed tomography (CT) was performed in 73 consecutive patients diagnosed with COVID-19. EAT thickness and volume were calculated by two radiologists blind to the study data. We formed two groups according to hs-TnI concentrations, patients with myocardial damage (hs-TnI ≥11.6 ng / l) and without myocardial damage (hs-TnI<11.6 ng / dl).Results    A total of 46 patients were women (63.0 %). The mean age was 66.4±12.3 yrs in the myocardial injury group and 55.9±9.7 yrs in the group without myocardial injury (p<0.001). There were 20 hypertensive patients (68.9 %) in the injury group, while there were 12 hypertensive patients (27.3 %) in the group without injury (p=0.001). Glucose, C-reactive protein, D-dimer, white blood cell count, neutrophil, and neutrophil / lymphocyte ratio were higher in the injury group (p<0.05, for all variables). The mean EAT thickness was 5.6±1.6 mm in the injury group, whereas it was 4.8±1.8 mm in the group without injury (p=0.031). EAT thickness of 4.85 mm and above was associated with the myocardial injury with 65 % sensitivity and 39 % specificity (AUC=0.65, 95 % CI: 0.52-078, p=0.031).Conclusion    In patients with COVID-19 infection, higher rates of myocardial injury were observed as the EAT thickness increased. Epicardial adipose tissue, contributes to cytokine-mediated myocardial injury either directly or indirectly by acting as a reservoir for coronavirus. Increased EAT thickness is associated with myocardial injury in COVID-19 patients.


Subject(s)
COVID-19 , Adipose Tissue/diagnostic imaging , Aged , Female , Humans , Middle Aged , Myocardium , Pericardium/diagnostic imaging , SARS-CoV-2
8.
Trials ; 22(1): 595, 2021 Sep 06.
Article in English | MEDLINE | ID: covidwho-1398873

ABSTRACT

BACKGROUND: Chronic lower limb ischemia develops earlier and more frequently in patients with type 2 diabetes mellitus. Diabetes remains the main cause of lower-extremity non-traumatic amputations. Current medical treatment, based on antiplatelet therapy and statins, has demonstrated deficient improvement of the disease. In recent years, research has shown that it is possible to improve tissue perfusion through therapeutic angiogenesis. Both in animal models and humans, it has been shown that cell therapy can induce therapeutic angiogenesis, making mesenchymal stromal cell-based therapy one of the most promising therapeutic alternatives. The aim of this study is to evaluate the feasibility, safety, and efficacy of cell therapy based on mesenchymal stromal cells derived from adipose tissue intramuscular administration to patients with type 2 diabetes mellitus with critical limb ischemia and without possibility of revascularization. METHODS: A multicenter, randomized double-blind, placebo-controlled trial has been designed. Ninety eligible patients will be randomly assigned at a ratio 1:1:1 to one of the following: control group (n = 30), low-cell dose treatment group (n = 30), and high-cell dose treatment group (n = 30). Treatment will be administered in a single-dose way and patients will be followed for 12 months. Primary outcome (safety) will be evaluated by measuring the rate of adverse events within the study period. Secondary outcomes (efficacy) will be measured by assessing clinical, analytical, and imaging-test parameters. Tertiary outcome (quality of life) will be evaluated with SF-12 and VascuQol-6 scales. DISCUSSION: Chronic lower limb ischemia has limited therapeutic options and constitutes a public health problem in both developed and underdeveloped countries. Given that the current treatment is not established in daily clinical practice, it is essential to provide evidence-based data that allow taking a step forward in its clinical development. Also, the multidisciplinary coordination exercise needed to develop this clinical trial protocol will undoubtfully be useful to conduct academic clinical trials in the field of cell therapy in the near future. TRIAL REGISTRATION: ClinicalTrials.gov NCT04466007 . Registered on January 07, 2020. All items from the World Health Organization Trial Registration Data Set are included within the body of the protocol.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cells , Noma , Adipose Tissue , Animals , Clinical Trials, Phase II as Topic , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/therapy , Double-Blind Method , Humans , Ischemia/diagnosis , Ischemia/therapy , Multicenter Studies as Topic , Quality of Life , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome
9.
Front Endocrinol (Lausanne) ; 12: 726967, 2021.
Article in English | MEDLINE | ID: covidwho-1394754

ABSTRACT

In March 2020, the WHO declared coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a global pandemic. Obesity was soon identified as a risk factor for poor prognosis, with an increased risk of intensive care admissions and mechanical ventilation, but also of adverse cardiovascular events. Obesity is associated with adipose tissue, chronic low-grade inflammation, and immune dysregulation with hypertrophy and hyperplasia of adipocytes and overexpression of pro-inflammatory cytokines. However, to implement appropriate therapeutic strategies, exact mechanisms must be clarified. The role of white visceral adipose tissue, increased in individuals with obesity, seems important, as a viral reservoir for SARS-CoV-2 via angiotensin-converting enzyme 2 (ACE2) receptors. After infection of host cells, the activation of pro-inflammatory cytokines creates a setting conducive to the "cytokine storm" and macrophage activation syndrome associated with progression to acute respiratory distress syndrome. In obesity, systemic viral spread, entry, and prolonged viral shedding in already inflamed adipose tissue may spur immune responses and subsequent amplification of a cytokine cascade, causing worse outcomes. More precisely, visceral adipose tissue, more than subcutaneous fat, could predict intensive care admission; and lower density of epicardial adipose tissue (EAT) could be associated with worse outcome. EAT, an ectopic adipose tissue that surrounds the myocardium, could fuel COVID-19-induced cardiac injury and myocarditis, and extensive pneumopathy, by strong expression of inflammatory mediators that could diffuse paracrinally through the vascular wall. The purpose of this review is to ascertain what mechanisms may be involved in unfavorable prognosis among COVID-19 patients with obesity, especially cardiovascular events, emphasizing the harmful role of excess ectopic adipose tissue, particularly EAT.


Subject(s)
COVID-19/metabolism , Cardiomyopathies/metabolism , Intra-Abdominal Fat/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/immunology , Cardiomyopathies/immunology , Cardiomyopathies/pathology , Heart Diseases/immunology , Heart Diseases/metabolism , Heart Diseases/pathology , Humans , Inflammation , Intra-Abdominal Fat/pathology , Obesity/complications , Obesity/immunology , Obesity/pathology , Pericardium , Prognosis , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism
11.
Medicine (Baltimore) ; 100(33): e26978, 2021 Aug 20.
Article in English | MEDLINE | ID: covidwho-1367078

ABSTRACT

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) has changed people's way of life and posed great challenges to plastic surgery. Most of plastic surgeries are considered elective surgeries and are recommended to be delayed. But breast reconstruction in plastic surgery is special. Doctors' associations from different countries have different rules on whether breast reconstruction surgery should be delayed. For the controversial topic of immediate breast reconstruction in the COVID-19 pandemic, we conducted this study. METHODS: We searched English databases such as PubMed, Cochrane Library, and Embase. The publication time of papers was set to be from the establishment of the databases to February 2021. All studies on immediate breast reconstruction in the COVID-19 pandemic were included in our study. RESULTS: A total of 6 studies were included in this study. Four studies recommended the use of breast implants or tissue expansion for breast reconstruction surgery and had good results in their clinical practice. In addition, 1 study planned to use autologous free tissue transfer for breast reconstruction, and 1 study planned to use microsurgical techniques for breast reconstruction. But these 2 technologies are still in the planning stage and have not yet been implemented. CONCLUSIONS: In our opinion, breast cancer surgery belongs to confine operation, and breast reconstruction surgery should be performed immediately after the completion of breast cancer surgery. We recommend the use of breast implants for breast reconstruction surgery during the COVID-19 epidemic. Due to the limitations of the study, our proposed protocol for breast reconstruction surgery during the COVID-19 epidemic needs to be further validated in clinical studies.


Subject(s)
COVID-19/epidemiology , Mammaplasty , Pandemics , Time-to-Treatment , Adipose Tissue/transplantation , Breast Implants , Breast Neoplasms/surgery , Female , Humans , Mammaplasty/methods , Mastectomy , Microsurgery , SARS-CoV-2 , Tissue Expansion Devices , Transplantation, Autologous
12.
Adipocyte ; 10(1): 408-411, 2021 12.
Article in English | MEDLINE | ID: covidwho-1360282

ABSTRACT

Angiotensin converting enzyme-2 (ACE2) is the cell-surface receptor enabling cellular entry of SARS-CoV-2. ACE2 is highly expressed in adipose tissue (AT), rendering AT a potential SARS-CoV-2 reservoir contributing to massive viral spread in COVID-19 patients with obesity. Although rodent and cell studies suggest that the polyphenol resveratrol alters ACE2, human studies are lacking. Here, we investigated the effects of 30-days resveratrol supplementation on RAS components in AT and skeletal muscle in men with obesity in a placebo-controlled cross-over study. Resveratrol markedly decreased ACE2 (~40%) and leptin (~30%), but did neither alter angiotensinogen, ACE and AT1R expression in AT nor skeletal muscle RAS components. These findings demonstrate that resveratrol supplementation reduces ACE2 in AT, which might dampen SARS-CoV-2 spread in COVID-19.


Subject(s)
Adipose Tissue/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Resveratrol/administration & dosage , Adipose Tissue/cytology , Angiotensin-Converting Enzyme 2/genetics , COVID-19/pathology , COVID-19/virology , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Down-Regulation/drug effects , Humans , Leptin/genetics , Leptin/metabolism , Male , Middle Aged , Obesity/drug therapy , Obesity/pathology , Placebo Effect , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Resveratrol/pharmacology , SARS-CoV-2/isolation & purification
13.
Cardiovasc Diabetol ; 20(1): 165, 2021 08 12.
Article in English | MEDLINE | ID: covidwho-1352662

ABSTRACT

BACKGROUND: COVID-19 diabetic adults are at increased risk of severe forms irrespective of obesity. In patients with type-II diabetes, fat distribution is characterized by visceral and ectopic adipose tissues expansion, resulting in systemic inflammation, which may play a role in driving the COVID-19 cytokine storm. Our aim was to determine if cardiac adipose tissue, combined to interleukin-6 levels, could predict adverse short-term outcomes, death and ICU requirement, in COVID-19 diabetic patients during the 21 days after admission. METHODS: Eighty one consecutive patients with type-II diabetes admitted for COVID-19 were included. Interleukin-6 measurement and chest computed tomography with total cardiac adipose tissue index (CATi) measurement were performed at admission. The primary outcome was death during the 21 days following admission while intensive care requirement with or without early death (ICU-R) defined the secondary endpoint. Associations of CATi and IL-6 and threshold values to predict the primary and secondary endpoints were determined. RESULTS: Of the enrolled patients (median age 66 years [IQR: 59-74]), 73% male, median body mass index (BMI) 27 kg/m2 [IQR: 24-31]) 20 patients had died from COVID-19, 20 required intensive care and 41 were in conventional care at day 21 after admission. Increased CATi and IL-6 levels were both significantly related to increased early mortality (respectively OR = 6.15, p = 0.002; OR = 18.2, p < 0.0001) and ICU-R (respectively OR = 3.27, p = 0.01; OR = 4.86, p = 0.002). These associations remained significant independently of age, sex, BMI as well as troponin-T level and pulmonary lesion extension in CT. We combined CATi and IL-6 levels as a multiplicative interaction score (CATi*IL-6). The cut-point for this score was ≥ 6386 with a sensitivity of 0.90 and a specificity of 0.87 (AUC = 0.88) and an OR of 59.6 for early mortality (p < 0.0001). CONCLUSIONS: Cardiac adipose tissue index and IL-6 determination at admission could help physicians to better identify diabetic patients with a potentially severe and lethal short term course irrespective of obesity. Diabetic patients with high CATi at admission, a fortiori associated with high IL-6 levels could be a relevant target population to promptly initiate anti-inflammatory therapies.


Subject(s)
Adipose Tissue/pathology , COVID-19/blood , Diabetes Mellitus, Type 2/complications , Interleukin-6/blood , Myocardium/pathology , Adipose Tissue/diagnostic imaging , Aged , COVID-19/complications , COVID-19/diagnostic imaging , COVID-19/mortality , Female , Heart/diagnostic imaging , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged , Organ Size , Prognosis , SARS-CoV-2 , Severity of Illness Index , Tomography, X-Ray Computed
14.
Am J Clin Nutr ; 114(5): 1655-1665, 2021 11 08.
Article in English | MEDLINE | ID: covidwho-1349771

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme 2 (ACE2) serves protective functions in metabolic, cardiovascular, renal, and pulmonary diseases and is linked to COVID-19 pathology. The correlates of temporal changes in soluble ACE2 (sACE2) remain understudied. OBJECTIVES: We explored the associations of sACE2 with metabolic health and proteome dynamics during a weight loss diet intervention. METHODS: We analyzed 457 healthy individuals (mean ± SD age: 39.8 ± 6.6 y) with BMI 28-40 kg/m2 in the DIETFITS (Diet Intervention Examining the Factors Interacting with Treatment Success) study. Biochemical markers of metabolic health and 236 proteins were measured by Olink CVDII, CVDIII, and Inflammation I arrays at baseline and at 6 mo during the dietary intervention. We determined clinical and routine biochemical correlates of the diet-induced change in sACE2 (ΔsACE2) using stepwise linear regression. We combined feature selection models and multivariable-adjusted linear regression to identify protein dynamics associated with ΔsACE2. RESULTS: sACE2 decreased on average at 6 mo during the diet intervention. Stronger decline in sACE2 during the diet intervention was independently associated with female sex, lower HOMA-IR and LDL cholesterol at baseline, and a stronger decline in HOMA-IR, triglycerides, HDL cholesterol, and fat mass. Participants with decreasing HOMA-IR (OR: 1.97; 95% CI: 1.28, 3.03) and triglycerides (OR: 2.71; 95% CI: 1.72, 4.26) had significantly higher odds for a decrease in sACE2 during the diet intervention than those without (P ≤ 0.0073). Feature selection models linked ΔsACE2 to changes in α-1-microglobulin/bikunin precursor, E-selectin, hydroxyacid oxidase 1, kidney injury molecule 1, tyrosine-protein kinase Mer, placental growth factor, thrombomodulin, and TNF receptor superfamily member 10B. ΔsACE2 remained associated with these protein changes in multivariable-adjusted linear regression. CONCLUSIONS: Decrease in sACE2 during a weight loss diet intervention was associated with improvements in metabolic health, fat mass, and markers of angiotensin peptide metabolism, hepatic and vascular injury, renal function, chronic inflammation, and oxidative stress. Our findings may improve the risk stratification, prevention, and management of cardiometabolic complications.This trial was registered at clinicaltrials.gov as NCT01826591.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Body Composition , COVID-19/metabolism , Diet, Reducing , Obesity/metabolism , Proteome/metabolism , Weight Loss/physiology , Adipose Tissue/metabolism , Adult , Biomarkers/blood , Body Mass Index , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Female , Humans , Inflammation , Insulin Resistance , Male , Middle Aged , Obesity/diet therapy , Oxidative Stress , Pandemics , SARS-CoV-2 , Triglycerides/blood , Weight Reduction Programs
15.
Biochimie ; 179: 257-265, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1326917

ABSTRACT

It is becoming obvious that in addition to aging and various hearth pathologies, excess of body weight, especially obesity is a major risk factor for severity of COVID-19 infection. Intriguingly the receptor for SARS-CoV-2 is ACE2, a member of the angiotensin receptor family that has a relatively large tissue distribution. This observation likely explains the multitude of symptoms that have been described from human patients. The adipose tissue also expresses ACE2, suggesting that adipocytes are potentially infected by SARS-CoV-2. Here we discuss some of the potential contribution of the adipose tissue to the severity of the infection and propose some aspects of obese patients metabolic phenotyping to help stratification of individuals with high risk of severe disease.


Subject(s)
COVID-19/complications , Obesity/complications , Adipose Tissue/pathology , Adipose Tissue/virology , Cytokines/metabolism , Humans , Obesity/metabolism , Obesity/pathology , Prevalence
16.
Int J Mol Sci ; 22(15)2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1325686

ABSTRACT

The present review is aimed at analysing the current evidence concerning the potential modulation of obesity and/or diet in adipose tissue ACE2. Additionally, the potential implications of these effects on COVID-19 are also addressed. The results published show that diet and obesity are two factors that effectively influence the expression of Ace2 gene in adipose tissue. However, the shifts in this gene do not always occur in the same direction, nor with the same intensity. Additionally, there is no consensus regarding the implications of increased adipose tissue ACE2 expression in health. Thus, while in some studies a protective role is attributed to ACE2 overexpression, other studies suggest otherwise. Similarly, there is much debate regarding the role played by ACE2 in COVID-19 in terms of degree of infection and disease outcomes. The greater risk of infection that may hypothetically derive from enhanced ACE2 expression is not clear since the functionality of the enzyme seems to be as important as the abundance. Thus, the greater abundance of ACE2 in adipose tissue of obese subjects may be counterbalanced by its lower activation. In addition, a protective role of ACE2 overexpression has also been suggested, associated with the increase in anti-inflammatory factors that it may produce.


Subject(s)
Adipose Tissue/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Obesity/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Diet , Humans , Renin-Angiotensin System/physiology , Severity of Illness Index
17.
Cardiovasc Diabetol ; 20(1): 147, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1319480

ABSTRACT

BACKGROUND: Both visceral adipose tissue and epicardial adipose tissue (EAT) have pro-inflammatory properties. The former is associated with Coronavirus Disease 19 (COVID-19) severity. We aimed to investigate whether an association also exists for EAT. MATERIAL AND METHODS: We retrospectively measured EAT volume using computed tomography (CT) scans (semi-automatic software) of inpatients with COVID-19 and analyzed the correlation between EAT volume and anthropometric characteristics and comorbidities. We then analyzed the clinicobiological and radiological parameters associated with severe COVID-19 (O2 [Formula: see text] 6 l/min), intensive care unit (ICU) admission or death, and 25% or more CT lung involvement, which are three key indicators of COVID-19 severity. RESULTS: We included 100 consecutive patients; 63% were men, mean age was 61.8 ± 16.2 years, 47% were obese, 54% had hypertension, 42% diabetes, and 17.2% a cardiovascular event history. Severe COVID-19 (n = 35, 35%) was associated with EAT volume (132 ± 62 vs 104 ± 40 cm3, p = 0.02), age, ferritinemia, and 25% or more CT lung involvement. ICU admission or death (n = 14, 14%) was associated with EAT volume (153 ± 67 vs 108 ± 45 cm3, p = 0.015), hypertension and 25% or more CT lung involvement. The association between EAT volume and severe COVID-19 remained after adjustment for sex, BMI, ferritinemia and lung involvement, but not after adjustment for age. Instead, the association between EAT volume and ICU admission or death remained after adjustment for all five of these parameters. CONCLUSIONS: Our results suggest that measuring EAT volume on chest CT scans at hospital admission in patients diagnosed with COVID-19 might help to assess the risk of disease aggravation.


Subject(s)
Adipose Tissue/diagnostic imaging , COVID-19/diagnostic imaging , Pericardium/diagnostic imaging , Tomography, X-Ray Computed , Adult , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/therapy , Female , Humans , Intensive Care Units , Lung/diagnostic imaging , Male , Middle Aged , Patient Admission , Predictive Value of Tests , Prognosis , Retrospective Studies , Severity of Illness Index
18.
Sensors (Basel) ; 20(21)2020 Oct 29.
Article in English | MEDLINE | ID: covidwho-1308410

ABSTRACT

Determining body composition via mobile application may circumvent limitations of conventional methods. However, the accuracy of many technologies remains unknown. This investigation assessed the convergent and concurrent validity of a mobile application (LS) that employs 2-dimensional digital photography (LS2D) and 3-dimensional photonic scanning (LS3D). Measures of body composition including circumferences, waist-to-hip ratio (WHR), and body fat percentage (BF%) were obtained from 240 healthy adults using LS and a diverse set of conventional methods-Gulick tape, bioelectrical impedance analysis (BIA), and skinfolds. Convergent validity was consistently high-indicating these methods vary proportionally and can thus reliably detect changes despite individual measurement differences. The span of the Limits of Agreement (LoA) using LS were comparable to the LoA between conventional methods. LS3D exhibited high agreement relative to Gulick tape in the measurement of WHR, despite poor agreement with individual waist and hip circumferences. In BF%, LS2D exhibited high agreement with BIA and skinfold methods, whereas LS3D demonstrated low agreement. Interestingly, the low inferred bias between LS3D and DXA using existing data suggests that LS3D may have high agreement with dual-energy x-ray absorptiometry. Overall, the suitability of LS2D and LS3D to replace conventional methods must be based on an individual user's criteria.


Subject(s)
Anthropometry/methods , Body Composition , Mobile Applications , Absorptiometry, Photon , Adipose Tissue , Adult , Electric Impedance , Humans , Photography
19.
Int J Obes (Lond) ; 45(10): 2238-2243, 2021 10.
Article in English | MEDLINE | ID: covidwho-1303760

ABSTRACT

BACKGROUND/OBJECTIVE: Obesity is a strong risk factor for adverse outcomes in patients hospitalized with COVID-19, however, the distribution of fat and the amount of muscle mass are more accurate risk factors than BMI. The objective of this study was to assess body composition measures obtained on opportunistic abdominal CTs as predictors of outcome in patients hospitalized with COVID-19. We hypothesized that elevated visceral and intermuscular adipose tissue would be associated with adverse outcome. SUBJECTS/METHODS: Our retrospective study was IRB-approved and HIPAA-compliant. The study group comprised 124 patients (median age: 68 years, IQR: 56, 77; 59 weeks, 65 months) who were admitted with COVID-19 to a single hospital and who had undergone abdominal CT for clinical purposes. Visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), intermuscular adipose tissue (IMAT), and paraspinal and abdominal muscle cross-sectional areas (CSA) were assessed. Clinical information including prognostic factors, time of admission to the intensive care unit (ICU) and time of death within 28 days were obtained. Multivariate time-to-event competing risk models were fitted to estimate the hazard ratio (HR) for a composite outcome of ICU admission/mortality associated with a one standard deviation increase in each body compositional measure. Each model was adjusted for age, sex, race, BMI, and cardiometabolic comorbidities. RESULTS: There were 50 patients who were admitted to the ICU or deceased over a median time of 1 day [IQR 1, 6] from hospital admission. Higher VAT/SAT ratio (HR of 1.30; 95% CI 1.04-1.62, p = 0.022) and higher IMAT CSA (HR of 1.44; 95% CI 1.10-1.89, p = 0.008) were associated with a reduced time to ICU admission or death in adjusted models. CONCLUSION: VAT/SAT and IMAT are predictors of adverse outcome in patients hospitalized with COVID-19, independent of other established prognostic factors. This suggests that body composition measures may serve as novel biomarkers of outcome in patients with COVID-19.


Subject(s)
Body Composition/physiology , COVID-19 , Obesity , Adipose Tissue/diagnostic imaging , Aged , Biomarkers , COVID-19/complications , COVID-19/diagnostic imaging , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , Obesity/complications , Obesity/diagnostic imaging , Obesity/epidemiology , Retrospective Studies , Tomography, X-Ray Computed , Treatment Outcome
20.
Elife ; 102021 07 06.
Article in English | MEDLINE | ID: covidwho-1298242

ABSTRACT

Background: To understand a causal role of modifiable lifestyle factors in angiotensin-converting enzyme 2 (ACE2) expression (a putative severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] receptor) across 44 human tissues/organs, and in coronavirus disease 2019 (COVID-19) susceptibility and severity, we conducted a phenome-wide two-sample Mendelian randomization (MR) study. Methods: More than 500 genetic variants were used as instrumental variables to predict smoking and alcohol consumption. Inverse-variance weighted approach was adopted as the primary method to estimate a causal association, while MR-Egger regression, weighted median, and MR pleiotropy residual sum and outlier (MR-PRESSO) were performed to identify potential horizontal pleiotropy. Results: We found that genetically predicted smoking intensity significantly increased ACE2 expression in thyroid (ß=1.468, p=1.8×10-8), and increased ACE2 expression in adipose, brain, colon, and liver with nominal significance. Additionally, genetically predicted smoking initiation significantly increased the risk of COVID-19 onset (odds ratio=1.14, p=8.7×10-5). No statistically significant result was observed for alcohol consumption. Conclusions: Our work demonstrates an important role of smoking, measured by both status and intensity, in the susceptibility to COVID-19. Funding: XJ is supported by research grants from the Swedish Research Council (VR-2018-02247) and Swedish Research Council for Health, Working Life and Welfare (FORTE-2020-00884).


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Mendelian Randomization Analysis , SARS-CoV-2/physiology , Tobacco Smoking/adverse effects , Adipose Tissue/metabolism , Alcohol Drinking/genetics , Angiotensin-Converting Enzyme 2/genetics , Brain/metabolism , COVID-19/virology , Causality , Colon/metabolism , Gene Expression Regulation , Humans , Liver/metabolism , Polymorphism, Single Nucleotide , Thyroid Gland/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...