Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
ACS Appl Bio Mater ; 5(3): 905-944, 2022 03 21.
Article in English | MEDLINE | ID: covidwho-1705996

ABSTRACT

This review discusses peptide epitopes used as antigens in the development of vaccines in clinical trials as well as future vaccine candidates. It covers peptides used in potential immunotherapies for infectious diseases including SARS-CoV-2, influenza, hepatitis B and C, HIV, malaria, and others. In addition, peptides for cancer vaccines that target examples of overexpressed proteins are summarized, including human epidermal growth factor receptor 2 (HER-2), mucin 1 (MUC1), folate receptor, and others. The uses of peptides to target cancers caused by infective agents, for example, cervical cancer caused by human papilloma virus (HPV), are also discussed. This review also provides an overview of model peptide epitopes used to stimulate non-specific immune responses, and of self-adjuvanting peptides, as well as the influence of other adjuvants on peptide formulations. As highlighted in this review, several peptide immunotherapies are in advanced clinical trials as vaccines, and there is great potential for future therapies due the specificity of the response that can be achieved using peptide epitopes.


Subject(s)
Vaccines, Subunit/administration & dosage , Adjuvants, Immunologic/administration & dosage , Animals , Antigens/immunology , Cancer Vaccines/administration & dosage , Communicable Disease Control , Humans , Neoplasms/therapy , Peptides/immunology
2.
Viruses ; 14(2)2022 02 14.
Article in English | MEDLINE | ID: covidwho-1687054

ABSTRACT

Several countries have made unremitting efforts to develop an optimal vaccine in the fight against coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the increasing occurrence of SARS-CoV-2 variants, current vaccines show decreased neutralizing activities, especially towards the Omicron variant. In this context, adding appropriate adjuvants to COVID-19 vaccines can substantially reduce the number of required doses and improve efficacy or cross-neutralizing protection. We mainly focus on research progress and achievements associated with adjuvanted COVID-19 subunit and inactivated vaccines. We further compare the advantages and disadvantages of different adjuvant formulations in order to provide a scientific reference for designing an effective strategy for future vaccine development.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/analysis , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/analysis , Humans , Vaccines, Inactivated
3.
Int J Mol Sci ; 23(3)2022 Feb 06.
Article in English | MEDLINE | ID: covidwho-1674673

ABSTRACT

The SARS-CoV-2 pandemic caused a massive health and societal crisis, although the fast development of effective vaccines reduced some of the impact. To prepare for future respiratory virus pandemics, a pan-viral prophylaxis could be used to control the initial virus outbreak in the period prior to vaccine approval. The liposomal vaccine adjuvant CAF®09b contains the TLR3 agonist polyinosinic:polycytidylic acid, which induces a type I interferon (IFN-I) response and an antiviral state in the affected tissues. When testing CAF09b liposomes as a potential pan-viral prophylaxis, we observed that intranasal administration of CAF09b liposomes to mice resulted in an influx of innate immune cells into the nose and lungs and upregulation of IFN-I-related gene expression. When CAF09b liposomes were administered prior to challenge with mouse-adapted influenza A/Puerto Rico/8/1934 virus, it protected from severe disease, although the virus was still detectable in the lungs. However, when CAF09b liposomes were administered after influenza challenge, the mice had a similar disease course to controls. In conclusion, CAF09b may be a suitable candidate as a pan-viral prophylactic treatment for epidemic viruses, but must be administered prior to virus exposure to be effective.


Subject(s)
/therapeutic use , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Orthomyxoviridae Infections/prevention & control , /methods , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/therapeutic use , /chemistry , Administration, Intranasal , Animals , COVID-19/prevention & control , COVID-19 Vaccines/chemical synthesis , COVID-19 Vaccines/therapeutic use , Cells, Cultured , Chick Embryo , Gene Expression Regulation/drug effects , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/pharmacology , Interferon Type I/genetics , Liposomes/chemistry , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Primary Prevention/methods , SARS-CoV-2/immunology
4.
Cell Mol Immunol ; 19(2): 222-233, 2022 02.
Article in English | MEDLINE | ID: covidwho-1607212

ABSTRACT

Although antivirals are important tools to control severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, effective vaccines are essential to control the current coronavirus disease 2019 (COVID-19) pandemic. Plant-derived virus-like particle (VLP) vaccine candidates have previously demonstrated immunogenicity and efficacy against influenza. Here, we report the immunogenicity and protection induced in rhesus macaques by intramuscular injections of a VLP bearing a SARS-CoV-2 spike protein (CoVLP) vaccine candidate formulated with or without Adjuvant System 03 (AS03) or cytidine-phospho-guanosine (CpG) 1018. Although a single dose of the unadjuvanted CoVLP vaccine candidate stimulated humoral and cell-mediated immune responses, booster immunization (at 28 days after priming) and adjuvant administration significantly improved both responses, with higher immunogenicity and protection provided by the AS03-adjuvanted CoVLP. Fifteen micrograms of CoVLP adjuvanted with AS03 induced a polyfunctional interleukin-2 (IL-2)-driven response and IL-4 expression in CD4 T cells. Animals were challenged by multiple routes (i.e., intratracheal, intranasal, and ocular) with a total viral dose of 106 plaque-forming units of SARS-CoV-2. Lower viral replication in nasal swabs and bronchoalveolar lavage fluid (BALF) as well as fewer SARS-CoV-2-infected cells and immune cell infiltrates in the lungs concomitant with reduced levels of proinflammatory cytokines and chemotactic factors in the BALF were observed in animals immunized with the CoVLP adjuvanted with AS03. No clinical, pathologic, or virologic evidence of vaccine-associated enhanced disease was observed in vaccinated animals. The CoVLP adjuvanted with AS03 was therefore selected for vaccine development and clinical trials.


Subject(s)
Adjuvants, Immunologic/adverse effects , COVID-19 Vaccines/adverse effects , COVID-19/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine/immunology , Pandemics/prevention & control , Polysorbates/adverse effects , SARS-CoV-2/immunology , Squalene/adverse effects , Tobacco/metabolism , Vaccination/methods , Vaccines, Virus-Like Particle/adverse effects , alpha-Tocopherol/adverse effects , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Disease Models, Animal , Drug Combinations , Drug Compounding/methods , Immunity, Humoral , Macaca mulatta , Male , Polysorbates/administration & dosage , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Squalene/administration & dosage , Treatment Outcome , Vaccines, Virus-Like Particle/administration & dosage , alpha-Tocopherol/administration & dosage
5.
J Allergy Clin Immunol ; 149(3): 923-933.e6, 2022 03.
Article in English | MEDLINE | ID: covidwho-1560006

ABSTRACT

BACKGROUND: Treatments for coronavirus disease 2019, which is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are urgently needed but remain limited. SARS-CoV-2 infects cells through interactions of its spike (S) protein with angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) on host cells. Multiple cells and organs are targeted, particularly airway epithelial cells. OM-85, a standardized lysate of human airway bacteria with strong immunomodulating properties and an impeccable safety profile, is widely used to prevent recurrent respiratory infections. We found that airway OM-85 administration inhibits Ace2 and Tmprss2 transcription in the mouse lung, suggesting that OM-85 might hinder SARS-CoV-2/host cell interactions. OBJECTIVES: We sought to investigate whether and how OM-85 treatment protects nonhuman primate and human epithelial cells against SARS-CoV-2. METHODS: ACE2 and TMPRSS2 mRNA and protein expression, cell binding of SARS-CoV-2 S1 protein, cell entry of SARS-CoV-2 S protein-pseudotyped lentiviral particles, and SARS-CoV-2 cell infection were measured in kidney, lung, and intestinal epithelial cell lines, primary human bronchial epithelial cells, and ACE2-transfected HEK293T cells treated with OM-85 in vitro. RESULTS: OM-85 significantly downregulated ACE2 and TMPRSS2 transcription and surface ACE2 protein expression in epithelial cell lines and primary bronchial epithelial cells. OM-85 also strongly inhibited SARS-CoV-2 S1 protein binding to, SARS-CoV-2 S protein-pseudotyped lentivirus entry into, and SARS-CoV-2 infection of epithelial cells. These effects of OM-85 appeared to depend on SARS-CoV-2 receptor downregulation. CONCLUSIONS: OM-85 inhibits SARS-CoV-2 epithelial cell infection in vitro by downregulating SARS-CoV-2 receptor expression. Further studies are warranted to assess whether OM-85 may prevent and/or reduce the severity of coronavirus disease 2019.


Subject(s)
Adjuvants, Immunologic/administration & dosage , COVID-19/prevention & control , Cell Extracts/administration & dosage , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/immunology , COVID-19/virology , Caco-2 Cells , Cell Extracts/immunology , Cells, Cultured , Chlorocebus aethiops , Down-Regulation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/virology , HEK293 Cells , Host Microbial Interactions/drug effects , Host Microbial Interactions/immunology , Humans , In Vitro Techniques , Lung/drug effects , Lung/immunology , Lung/virology , Mice , Mice, Inbred BALB C , Serine Endopeptidases/drug effects , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Transcription, Genetic/drug effects , Transcription, Genetic/immunology , Vero Cells
6.
Virology ; 566: 56-59, 2022 01.
Article in English | MEDLINE | ID: covidwho-1550137

ABSTRACT

BACKGROUND: Recombinant protein subunit vaccination is considered to be a safe, fast and reliable technique when combating emerging and re-emerging diseases such as coronavirus disease 2019 (COVID-19). Typically, such subunit vaccines require the addition of adjuvants to attain adequate immunogenicity. AS01, which contains adjuvants MPL and saponin QS21, is a liposome-based vaccine adjuvant system that is one of the leading candidates. However, the adjuvant effect of AS01 in COVID-19 vaccines is not well described yet. METHODS: In this study, we utilized a mixture of AS01 as the adjuvant for an S1 protein-based COVID-19 vaccine. RESULTS: The adjuvanted vaccine induced robust immunoglobulin G (IgG) binding antibody and virus-neutralizing antibody responses. Importantly, two doses induced similar levels of IgG binding antibody and neutralizing antibody responses compared with three doses and the antibody responses weakened only slightly over time up to six weeks after immunization. CONCLUSION: These results suggested that two doses may be enough for a clinical vaccine strategy design using MPL & QS21 adjuvanted recombinant protein, especially in consideration of the limited production capacity of COVID-19 vaccine in a public health emergency.


Subject(s)
Antigens, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Lipid A/analogs & derivatives , SARS-CoV-2/immunology , Saponins/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing , Antibodies, Viral/metabolism , Antibody Formation , COVID-19/virology , Dose-Response Relationship, Immunologic , Drug Combinations , Female , HEK293 Cells , Humans , Immunization , Immunogenicity, Vaccine , Lipid A/administration & dosage , Lipid A/immunology , Mice, Inbred BALB C , Recombinant Proteins/administration & dosage , Recombinant Proteins/immunology , Saponins/administration & dosage
7.
Adv Drug Deliv Rev ; 179: 114020, 2021 12.
Article in English | MEDLINE | ID: covidwho-1486938

ABSTRACT

Adjuvant is an essential component in subunit vaccines. Many agonists of pathogen recognition receptors have been developed as potent adjuvants to optimize the immunogenicity and efficacy of vaccines. Recently discovered cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has attracted much attention as it is a key mediator for modulating immune responses. Vaccines adjuvanted with STING agonists are found to mediate a robust immune defense against infections and cancer. In this review, we first discuss the mechanisms of STING agonists in the context of vaccination. Next, we present recent progress in novel STING agonist discovery and the delivery strategies. We next highlight recent work in optimizing the efficacy while minimizing toxicity of STING agonist-assisted subunit vaccines for protection against infectious diseases or treatment of cancer. Finally, we share our perspectives of current issues and future directions in further developing STING agonists for adjuvanting subunit vaccines.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Membrane Proteins/agonists , Membrane Proteins/immunology , Vaccines, Subunit/immunology , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Dendritic Cells/drug effects , Humans , Immunity, Humoral/drug effects , Nucleotidyltransferases/metabolism
8.
Adv Sci (Weinh) ; 8(23): e2100118, 2021 12.
Article in English | MEDLINE | ID: covidwho-1482096

ABSTRACT

Recently, viral infectious diseases, including COVID-19 and Influenza, are the subjects of major concerns worldwide. One strategy for addressing these concerns focuses on nasal vaccines, which have great potential for achieving successful immunization via safe, easy, and affordable approaches. However, conventional nasal vaccines have major limitations resulting from fast removal when pass through nasal mucosa and mucociliary clearance hindering their effectiveness. Herein a nanoparticulate vaccine (NanoVac) exhibiting photochemical immunomodulation and constituting a new self-assembled immunization system of a photoactivatable polymeric adjuvant with influenza virus hemagglutinin for efficient nasal delivery and antigen-specific immunity against pathogenic influenza viruses is described. NanoVac increases the residence period of antigens and further enhances by spatiotemporal photochemical modulation in the nasal cavity. As a consequence, photochemical immunomodulation of NanoVacs successfully induces humoral and cellular immune responses followed by stimulation of mature dendritic cells, plasma cells, memory B cells, and CD4+ and CD8+ T cells, resulting in secretion of antigen-specific immunoglobulins, cytokines, and CD8+ T cells. Notably, challenge with influenza virus after nasal immunization with NanoVacs demonstrates robust prevention of viral infection. Thus, this newly designed vaccine system can serve as a promising strategy for developing vaccines that are active against current hazardous pathogen outbreaks and pandemics.


Subject(s)
Hemagglutinins/chemistry , Influenza Vaccines/administration & dosage , Light , Nanoparticles/chemistry , Orthomyxoviridae Infections/prevention & control , Adjuvants, Immunologic/administration & dosage , Administration, Inhalation , Animals , Antigens/administration & dosage , Antigens/chemistry , Antigens/immunology , Dendritic Cells/cytology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Hemagglutinins/administration & dosage , Hemagglutinins/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Interferon-gamma/metabolism , Male , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Photosensitizing Agents/chemistry , Polymers/chemistry
11.
Emerg Microbes Infect ; 10(1): 1931-1946, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1429140

ABSTRACT

Identification of relevant epitopes is crucial for the development of subunit peptide vaccines inducing neutralizing and cellular immunity against SARS-CoV-2. Our aim was the characterization of epitopes in the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein to generate a peptide vaccine. Epitope mapping using a panel of 10 amino acid overlapped 15-mer peptides covering region 401-515 from RBD did not identify linear epitopes when tested with sera from infected individuals or from RBD-immunized mice. However, immunization of mice with these 15-mer peptides identified four peptides located at region 446-480 that induced antibodies recognizing the peptides and RBD/S1 proteins. Immunization with peptide 446-480 from S protein formulated with Freund's adjuvant or with CpG oligodeoxinucleotide/Alum induced polyepitopic antibody responses in BALB/c and C56BL/6J mice, recognizing RBD (titres of 3 × 104-3 × 105, depending on the adjuvant) and displaying neutralizing capacity (80-95% inhibition capacity; p < 0.05) against SARS-CoV-2. Murine CD4 and CD8T-cell epitopes were identified in region 446-480 and vaccination experiments using HLA transgenic mice suggested the presence of multiple human T-cell epitopes. Antibodies induced by peptide 446-480 showed broad recognition of S proteins and S-derived peptides belonging to SARS-CoV-2 variants of concern. Importantly, vaccination with peptide 446-480 or with a cyclic version of peptide 446-488 containing a disulphide bridge between cysteines 480 and 488, protected humanized K18-hACE2 mice from a lethal dose of SARS-CoV-2 (62.5 and 75% of protection; p < 0.01 and p < 0.001, respectively). This region could be the basis for a peptide vaccine or other vaccine platforms against Covid-19.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunity, Cellular , Immunity, Humoral , SARS-CoV-2/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/blood , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19 Vaccines/standards , Cross Reactions/immunology , Epitope Mapping , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte/immunology , Humans , Immunization , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology , Vaccines, Synthetic/immunology
13.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: covidwho-1392996

ABSTRACT

Emergence of novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean serum neutralizing antibody titers of 14,000 to 21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within 4 d in seven of eight animals receiving 50 µg of RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only approximately twofold relative to WA1/2020. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-CoV-like Sarbecovirus vaccine development.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/virology , Macaca mulatta/immunology , Nanoparticles/chemistry , Receptors, Virus/metabolism , SARS-CoV-2/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Ferritins/chemistry , SARS-CoV-2/metabolism , T-Lymphocytes/immunology
14.
Nat Commun ; 12(1): 3587, 2021 06 11.
Article in English | MEDLINE | ID: covidwho-1387350

ABSTRACT

There is a great need for the development of vaccines that induce potent and long-lasting protective immunity against SARS-CoV-2. Multimeric display of the antigen combined with potent adjuvant can enhance the potency and longevity of the antibody response. The receptor binding domain (RBD) of the spike protein is a primary target of neutralizing antibodies. Here, we developed a trimeric form of the RBD and show that it induces a potent neutralizing antibody response against live virus with diverse effector functions and provides protection against SARS-CoV-2 challenge in mice and rhesus macaques. The trimeric form induces higher neutralizing antibody titer compared to monomer with as low as 1µg antigen dose. In mice, adjuvanting the protein with a TLR7/8 agonist formulation alum-3M-052 induces 100-fold higher neutralizing antibody titer and superior protection from infection compared to alum. SARS-CoV-2 infection causes significant loss of innate cells and pathology in the lung, and vaccination protects from changes in innate cells and lung pathology. These results demonstrate RBD trimer protein as a suitable candidate for vaccine against SARS-CoV-2.


Subject(s)
Adjuvants, Immunologic/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Heterocyclic Compounds, 3-Ring/administration & dosage , Stearic Acids/administration & dosage , Alum Compounds/administration & dosage , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19 Vaccines/administration & dosage , Disease Models, Animal , Heterocyclic Compounds, 3-Ring/immunology , Humans , Macaca mulatta , Mice , Protein Binding , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Stearic Acids/immunology
15.
Lancet Infect Dis ; 21(9): 1257-1270, 2021 09.
Article in English | MEDLINE | ID: covidwho-1371556

ABSTRACT

BACKGROUND: CoV2 preS dTM is a stabilised pre-fusion spike protein vaccine produced in a baculovirus expression system being developed against SARS-CoV-2. We present interim safety and immunogenicity results of the first-in-human study of the CoV2 preS dTM vaccine with two different adjuvant formulations. METHODS: This phase 1-2, randomised, double-blind study is being done in healthy, SARS-CoV-2-seronegative adults in ten clinical research centres in the USA. Participants were stratified by age (18-49 years and ≥50 years) and randomly assigned using an interactive response technology system with block randomisation (blocks of varying size) to receive one dose (on day 1) or two doses (on days 1 and 22) of placebo or candidate vaccine, containing low-dose (effective dose 1·3 µg) or high-dose (2·6 µg) antigen with adjuvant AF03 (Sanofi Pasteur) or AS03 (GlaxoSmithKline) or unadjuvanted high-dose antigen (18-49 years only). Primary endpoints were safety, assessed up to day 43, and immunogenicity, measured as SARS-C0V-2 neutralising antibodies (geometric mean titres), assessed on days 1, 22, and 36 serum samples. Safety was assessed according to treatment received in the safety analysis set, which included all randomly assigned participants who received at least one dose. Neutralising antibody titres were assessed in the per-protocol analysis set for immunogenicity, which included participants who received at least one dose, met all inclusion and exclusion criteria, had no protocol deviation, had negative results in the neutralisation test at baseline, and had at least one valid post-dose serology sample. This planned interim analysis reports data up to 43 days after the first vaccination; participants in the trial will be followed up for 12 months after the last study injection. This trial is registered with ClinicalTrials.gov, NCT04537208, and is ongoing. FINDINGS: Between Sept 3 and Sept 29, 2020, 441 individuals (299 aged 18-49 years and 142 aged ≥50 years) were randomly assigned to one of the 11 treatment groups. The interim safety analyses included 439 (>99%) of 441 randomly assigned participants (299 aged 18-49 years and 140 aged ≥50 years). Neutralising antibody titres were analysed in 326 (74%) of 441 participants (235 [79%] of 299 aged 18-49 years and 91 [64%] of 142 aged ≥50 years). There were no vaccine-related unsolicited immediate adverse events, serious adverse events, medically attended adverse events classified as severe, or adverse events of special interest. Among all study participants, solicited local and systemic reactions of any grade after two vaccine doses were reported in 81% (95% CI 61-93; 21 of 26) of participants in the low-dose plus AF03 group, 93% (84-97; 74 of 80) in the low-dose plus AS03 group, 89% (70-98; 23 of 26) in the high-dose plus AF03 group, 95% (88-99; 81 of 85) in the high-dose plus AS03 group, 29% (10-56; five of 17) in the unadjuvanted high-dose group, and 21% (8-40; six of 29) in the placebo group. A single vaccine dose did not generate neutralising antibody titres above placebo levels in any group at days 22 or 36. Among participants aged 18-49 years, neutralising antibody titres after two vaccine doses were 13·1 (95% CI 6·40-26·9) in the low-dose plus AF03 group, 20·5 (13·1-32·1) in the low-dose plus AS03 group, 43·2 (20·6-90·4) in the high-dose plus AF03 group, 75·1 (50·5-112·0) in the high-dose plus AS03 group, 5·00 (not calculated) in the unadjuvanted high-dose group, and 5·00 (not calculated) in the placebo group. Among participants aged 50 years or older, neutralising antibody titres after two vaccine doses were 8·62 (1·90-39·0) in the low-dose plus AF03 group, 12·9 (7·09-23·4) in the low-dose plus AS03 group, 12·3 (4·35-35·0) in the high-dose plus AF03 group, 52·3 (25·3-108·0) in the high-dose plus AS03 group, and 5·00 (not calculated) in the placebo group. INTERPRETATION: The lower than expected immune responses, especially in the older age groups, and the high reactogenicity after dose two were probably due to higher than anticipated host-cell protein content and lower than planned antigen doses in the formulations tested, which was discovered during characterisation studies on the final bulk drug substance. Further development of the AS03-adjuvanted candidate vaccine will focus on identifying the optimal antigen formulation and dose. FUNDING: Sanofi Pasteur and Biomedical Advanced Research and Development Authority.


Subject(s)
Adjuvants, Immunologic/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunogenicity, Vaccine , Recombinant Proteins/administration & dosage , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/drug effects , Antibodies, Viral/drug effects , COVID-19 Vaccines/immunology , Double-Blind Method , Female , Humans , Male , Middle Aged , Recombinant Proteins/immunology , Spike Glycoprotein, Coronavirus , United States/epidemiology
16.
Sci Immunol ; 6(61)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1315792

ABSTRACT

Ongoing SARS-CoV-2 vaccine development is focused on identifying stable, cost-effective, and accessible candidates for global use, specifically in low and middle-income countries. Here, we report the efficacy of a rapidly scalable, novel yeast expressed SARS-CoV-2 specific receptor-binding domain (RBD) based vaccine in rhesus macaques. We formulated the RBD immunogen in alum, a licensed and an emerging alum adsorbed TLR-7/8 targeted, 3M-052-alum adjuvants. The RBD+3M-052-alum adjuvanted vaccine promoted better RBD binding and effector antibodies, higher CoV-2 neutralizing antibodies, improved Th1 biased CD4+T cell reactions, and increased CD8+ T cell responses when compared to the alum-alone adjuvanted vaccine. RBD+3M-052-alum induced a significant reduction of SARS-CoV-2 virus in respiratory tract upon challenge, accompanied by reduced lung inflammation when compared with unvaccinated controls. Anti-RBD antibody responses in vaccinated animals inversely correlated with viral load in nasal secretions and BAL. RBD+3M-052-alum blocked a post SARS-CoV-2 challenge increase in CD14+CD16++ intermediate blood monocytes, and Fractalkine, MCP-1, and TRAIL in the plasma. Decreased plasma analytes and intermediate monocyte frequencies correlated with reduced nasal and BAL viral loads. Lastly, RBD-specific plasma cells accumulated in the draining lymph nodes and not in the bone marrow, contrary to previous findings. Together, these data show that a yeast expressed, RBD-based vaccine+3M-052-alum provides robust immune responses and protection against SARS-CoV-2, making it a strong and scalable vaccine candidate.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Saccharomycetales/genetics , Spike Glycoprotein, Coronavirus/genetics , Administration, Inhalation , Administration, Intranasal , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cell Line , Cytokines/immunology , Humans , Immunoglobulin G/immunology , Lung/pathology , Macaca mulatta , Male , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/immunology , Viral Load
17.
Mol Pharm ; 18(8): 2867-2888, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1310776

ABSTRACT

Despite the many advances that have occurred in the field of vaccine adjuvants, there are still unmet needs that may enable the development of vaccines suitable for more challenging pathogens (e.g., HIV and tuberculosis) and for cancer vaccines. Liposomes have already been shown to be highly effective as adjuvant/delivery systems due to their versatility and likely will find further uses in this space. The broad potential of lipid-based delivery systems is highlighted by the recent approval of COVID-19 vaccines comprising lipid nanoparticles with encapsulated mRNA. This review provides an overview of the different approaches that can be evaluated for the design of lipid-based vaccine adjuvant/delivery systems for protein, carbohydrate, and nucleic acid-based antigens and how these strategies might be combined to develop multicomponent vaccines.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antigens/administration & dosage , Drug Delivery Systems , Lipids/chemistry , Nanoparticles/chemistry , Vaccines/administration & dosage , COVID-19 Vaccines/administration & dosage , Humans , Liposomes , SARS-CoV-2/immunology , Vaccines/chemistry
18.
Lancet Infect Dis ; 21(12): 1645-1653, 2021 12.
Article in English | MEDLINE | ID: covidwho-1284631

ABSTRACT

BACKGROUND: A vaccine against SARS-CoV-2 for children and adolescents will play an important role in curbing the COVID-19 pandemic. Here we aimed to assess the safety, tolerability, and immunogenicity of a candidate COVID-19 vaccine, CoronaVac, containing inactivated SARS-CoV-2, in children and adolescents aged 3-17 years. METHODS: We did a double-blind, randomised, controlled, phase 1/2 clinical trial of CoronaVac in healthy children and adolescents aged 3-17 years old at Hebei Provincial Center for Disease Control and Prevention in Zanhuang (Hebei, China). Individuals with SARS-CoV-2 exposure or infection history were excluded. Vaccine (in 0·5 mL aluminum hydroxide adjuvant) or aluminum hydroxide only (alum only, control) was given by intramuscular injection in two doses (day 0 and day 28). We did a phase 1 trial in 72 participants with an age de-escalation in three groups and dose-escalation in two blocks (1·5 µg or 3·0 µg per injection). Within each block, participants were randomly assigned (3:1) by means of block randomisation to receive CoronaVac or alum only. In phase 2, participants were randomly assigned (2:2:1) by means of block randomisation to receive either CoronaVac at 1·5 µg or 3·0 µg per dose, or alum only. All participants, investigators, and laboratory staff were masked to group allocation. The primary safety endpoint was adverse reactions within 28 days after each injection in all participants who received at least one dose. The primary immunogenicity endpoint assessed in the per-protocol population was seroconversion rate of neutralising antibody to live SARS-CoV-2 at 28 days after the second injection. This study is ongoing and is registered with ClinicalTrials.gov, NCT04551547. FINDINGS: Between Oct 31, 2020, and Dec 2, 2020, 72 participants were enrolled in phase 1, and between Dec 12, 2020, and Dec 30, 2020, 480 participants were enrolled in phase 2. 550 participants received at least one dose of vaccine or alum only (n=71 for phase 1 and n=479 for phase 2; safety population). In the combined safety profile of phase 1 and phase 2, any adverse reactions within 28 days after injection occurred in 56 (26%) of 219 participants in the 1·5 µg group, 63 (29%) of 217 in the 3·0 µg group, and 27 (24%) of 114 in the alum-only group, without significant difference (p=0·55). Most adverse reactions were mild and moderate in severity. Injection site pain was the most frequently reported event (73 [13%] of 550 participants), occurring in 36 (16%) of 219 participants in the 1·5 µg group, 35 (16%) of 217 in the 3·0 µg group, and two (2%) in the alum-only group. As of June 12, 2021, only one serious adverse event of pneumonia has been reported in the alum-only group, which was considered unrelated to vaccination. In phase 1, seroconversion of neutralising antibody after the second dose was observed in 27 of 27 participants (100·0% [95% CI 87·2-100·0]) in the 1·5 µg group and 26 of 26 participants (100·0% [86·8-100·0]) in the 3·0 µg group, with the geometric mean titres of 55·0 (95% CI 38·9-77·9) and 117·4 (87·8-157·0). In phase 2, seroconversion was seen in 180 of 186 participants (96·8% [93·1-98·8]) in the 1·5 µg group and 180 of 180 participants (100·0% [98·0-100·0]) in the 3·0 µg group, with the geometric mean titres of 86·4 (73·9-101·0) and 142·2 (124·7-162·1). There were no detectable antibody responses in the alum-only groups. INTERPRETATION: CoronaVac was well tolerated and safe and induced humoral responses in children and adolescents aged 3-17 years. Neutralising antibody titres induced by the 3·0 µg dose were higher than those of the 1·5 µg dose. The results support the use of 3·0 µg dose with a two-immunisation schedule for further studies in children and adolescents. FUNDING: The Chinese National Key Research and Development Program and the Beijing Science and Technology Program.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccines, Inactivated/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects , Adolescent , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Child , Child, Preschool , China , Dose-Response Relationship, Immunologic , Double-Blind Method , Female , Humans , Immunization , Immunogenicity, Vaccine , Injections, Intramuscular , Male , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects
19.
Adv Drug Deliv Rev ; 178: 113848, 2021 11.
Article in English | MEDLINE | ID: covidwho-1283843

ABSTRACT

The emergence of SARS-CoV-2, and the ensuing global pandemic, has resulted in an unprecedented response to identify therapies that can limit uncontrolled inflammation observed in patients with moderate to severe COVID-19. The immune pathology behind COVID-19 is complex and involves the activation and interaction of multiple systems including, but not limited to, complement, inflammasomes, endothelial as well as innate and adaptive immune cells to bring about a convoluted profile of inflammation, coagulation and tissue damage. To date, therapeutic approaches have focussed on inhibition of coagulation, untargeted immune suppression and/or cytokine-directed blocking agents. Regardless of recently achieved improvements in individual patient outcomes and survival rates, improved and focussed approaches targeting individual systems involved is needed to further improve prognosis and wellbeing. This review summarizes the current understanding of molecular and cellular systems involved in the pathophysiology of COVID-19, and their contribution to pathogen clearance and damage to then discuss possible therapeutic options involving immunomodulatory drug delivery systems as well as summarising the complex interplay between them.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19/drug therapy , Drug Delivery Systems/methods , Immunologic Factors/administration & dosage , Inflammasomes/antagonists & inhibitors , Adjuvants, Immunologic/administration & dosage , Animals , Antiviral Agents/immunology , COVID-19/immunology , Communicable Diseases/drug therapy , Communicable Diseases/immunology , Complement Activation/drug effects , Complement Activation/immunology , Drug Delivery Systems/trends , Humans , Immunologic Factors/immunology , Inflammasomes/immunology
20.
Front Immunol ; 12: 641447, 2021.
Article in English | MEDLINE | ID: covidwho-1264330

ABSTRACT

The newly emerged novel coronavirus, SARS-CoV-2, the causative agent of COVID-19 has proven to be a threat to the human race globally, thus, vaccine development against SARS-CoV-2 is an unmet need driving mass vaccination efforts. The receptor binding domain of the spike protein of this coronavirus has multiple neutralizing epitopes and is associated with viral entry. Here we have designed and characterized the SARS-CoV-2 spike protein fragment 330-526 as receptor binding domain 330-526 (RBD330-526) with two native glycosylation sites (N331 and N343); as a potential subunit vaccine candidate. We initially characterized RBD330-526 biochemically and investigated its thermal stability, humoral and T cell immune response of various RBD protein formulations (with or without adjuvant) to evaluate the inherent immunogenicity and immunomodulatory effect. Our result showed that the purified RBD immunogen is stable up to 72 h, without any apparent loss in affinity or specificity of interaction with the ACE2 receptor. Upon immunization in mice, RBD generates a high titer humoral response, elevated IFN-γ producing CD4+ cells, cytotoxic T cells, and robust neutralizing antibodies against live SARS-CoV-2 virus. Our results collectively support the potential of RBD330-526 as a promising vaccine candidate against SARS-CoV-2.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , Immunity, Humoral/drug effects , Immunogenicity, Vaccine , Peptide Fragments/administration & dosage , Spike Glycoprotein, Coronavirus/administration & dosage , Th1 Cells/drug effects , Adjuvants, Immunologic/administration & dosage , Animals , Biomarkers/blood , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Drug Stability , Glycosylation , HEK293 Cells , Humans , Immunization , Interferon-gamma/blood , Male , Mice, Inbred C57BL , Peptide Fragments/immunology , Protein Interaction Domains and Motifs , Protein Stability , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology , Th1 Cells/metabolism , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL