Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 224
Filter
Add filters

Document Type
Year range
2.
J Hazard Mater ; 425: 128051, 2022 03 05.
Article in English | MEDLINE | ID: covidwho-1561920

ABSTRACT

The number of people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to increase worldwide, but despite extensive research, there remains significant uncertainty about the predominant routes of SARS-CoV-2 transmission. We conducted a mechanistic modeling and calculated the exposure dose and infection risk of each passenger in a two-bus COVID-19 outbreak in Hunan province, China. This outbreak originated from a single pre-symptomatic index case. Some human behavioral data related to exposure including boarding and alighting time of some passengers and seating position and mask wearing of all passengers were obtained from the available closed-circuit television images/clips and/or questionnaire survey. Least-squares fitting was performed to explore the effect of effective viral load on transmission risk, and the most likely quanta generation rate was also estimated. This study reveals the leading role of airborne SARS-CoV-2 transmission and negligible role of fomite transmission in a poorly ventilated indoor environment, highlighting the need for more targeted interventions in such environments. The quanta generation rate of the index case differed by a factor of 1.8 on the two buses and transmission occurred in the afternoon of the same day, indicating a time-varying effective viral load within a short period of five hours.


Subject(s)
Air Microbiology , COVID-19 , Fomites/virology , Motor Vehicles , SARS-CoV-2 , COVID-19/transmission , Disease Outbreaks , Humans
3.
Sci Rep ; 11(1): 21284, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1493215

ABSTRACT

We quantified the presence of SARS-CoV-2 RNA in the air of different hospital settings and the autopsy room of the largest medical centre in Sao Paulo, Brazil. Real-time reverse-transcription PCR was used to determine the presence of the envelope protein of SARS-CoV-2 and the nucleocapsid protein genes. The E-gene was detected in 5 out of 6 samples at the ICU-COVID-19 ward and in 5 out of 7 samples at the ward-COVID-19. Similarly, in the non-dedicated facilities, the E-gene was detected in 5 out of 6 samples collected in the ICU and 4 out of 7 samples in the ward. In the necropsy room, 6 out of 7 samples were positive for the E-gene. When both wards were compared, the non-COVID ward presented a significantly higher concentration of the E-gene than in the COVID-19 ward (p = 0.003). There was no significant difference in E-gene concentration between the ICU-COVID-19 and the ICU (p = 0.548). Likewise, there was no significant difference among E-gene concentrations found in the autopsy room versus the ICUs and wards (dedicated or not) (p = 0.245). Our results show the widespread presence of aerosol contamination in different hospital units.


Subject(s)
Air Microbiology , COVID-19/virology , Hospitals , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Aerosols , Autopsy , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/transmission , COVID-19 Nucleic Acid Testing , Genome, Viral , Hospital Units , Humans , Intensive Care Units , Pandemics , Pathology Department, Hospital , RNA, Viral/analysis , RNA, Viral/genetics , Virion/genetics , Virion/isolation & purification
4.
PLoS Comput Biol ; 17(10): e1009474, 2021 10.
Article in English | MEDLINE | ID: covidwho-1477508

ABSTRACT

The role of heating, ventilation, and air-conditioning (HVAC) systems in the transmission of SARS-CoV-2 is unclear. To address this gap, we simulated the release of SARS-CoV-2 in a multistory office building and three social gathering settings (bar/restaurant, nightclub, wedding venue) using a well-mixed, multi-zone building model similar to those used by Wells, Riley, and others. We varied key factors of HVAC systems, such as the Air Changes Per Hour rate (ACH), Fraction of Outside Air (FOA), and Minimum Efficiency Reporting Values (MERV) to examine their effect on viral transmission, and additionally simulated the protective effects of in-unit ultraviolet light decontamination (UVC) and separate in-room air filtration. In all building types, increasing the ACH reduced simulated infections, and the effects were seen even with low aerosol emission rates. However, the benefits of increasing the fraction of outside air and filter efficiency rating were greatest when the aerosol emission rate was high. UVC filtration improved the performance of typical HVAC systems. In-room filtration in an office setting similarly reduced overall infections but worked better when placed in every room. Overall, we found little evidence that HVAC systems facilitate SARS-CoV-2 transmission; most infections in the simulated office occurred near the emission source, with some infections in individuals temporarily visiting the release zone. HVAC systems only increased infections in one scenario involving a marginal increase in airflow in a poorly ventilated space, which slightly increased the likelihood of transmission outside the release zone. We found that improving air circulation rates, increasing filter MERV rating, increasing the fraction of outside air, and applying UVC radiation and in-room filtration may reduce SARS-CoV-2 transmission indoors. However, these mitigation measures are unlikely to provide a protective benefit unless SARS-CoV-2 aerosol emission rates are high (>1,000 Plaque-forming units (PFU) / min).


Subject(s)
Air Conditioning , COVID-19/transmission , Heating , SARS-CoV-2 , Ventilation , Aerosols , Air Microbiology , Air Movements , COVID-19/prevention & control , COVID-19/virology , Computational Biology , Computer Simulation , Humans , Models, Biological , Pandemics , SARS-CoV-2/radiation effects , Social Interaction , Ultraviolet Rays , Workplace
5.
Obstet Gynecol ; 138(4): 616-621, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1462518

ABSTRACT

OBJECTIVE: To characterize respiratory emissions produced during labor and vaginal delivery vis-à-vis the potential for transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: Observational study of three women who tested negative for SARS-CoV-2 and had uncomplicated vaginal deliveries. Using background-oriented schlieren imaging, we evaluated the propagation of respiratory emissions produced during the labor course and delivery. The primary outcome was the speed and propagation of breath over time, calculated through processed images collected throughout labor and delivery. RESULTS: In early labor with regular breathing, the speed of the breath was 1.37 meters/s (range 1.20-1.55 meters/s). The breath appeared to propagate faster with a cough during early labor at a speed of 1.69 meters/s (range 1.22-2.27 meters/s). During the second stage of labor with Valsalva and forced expiration, the propagation speed was 1.79 meters/s (range 1.71-1.86 meters/s). CONCLUSION: Labor and vaginal delivery increase the propagation of respiratory emissions that may increase risk of respiratory transmission of SARS-CoV-2.


Subject(s)
Air Microbiology , COVID-19/transmission , Inhalation Exposure/analysis , Labor, Obstetric/physiology , Respiration , Adult , Delivery, Obstetric/methods , Disease Transmission, Infectious , Female , Humans , Pregnancy , SARS-CoV-2 , Vagina , Young Adult
6.
Sci Rep ; 11(1): 19930, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1462026

ABSTRACT

Transmission of SARS-CoV-2 by aerosols has played a significant role in the rapid spread of COVID-19 across the globe. Indoor environments with inadequate ventilation pose a serious infection risk. Whilst vaccines suppress transmission, they are not 100% effective and the risk from variants and new viruses always remains. Consequently, many efforts have focused on ways to disinfect air. One such method involves use of minimally hazardous 222 nm far-UVC light. Whilst a small number of controlled experimental studies have been conducted, determining the efficacy of this approach is difficult because chamber or room geometry, and the air flow within them, influences both far-UVC illumination and aerosol dwell times. Fortunately, computational multiphysics modelling allows the inadequacy of dose-averaged assessment of viral inactivation to be overcome in these complex situations. This article presents the first validation of the WYVERN radiation-CFD code for far-UVC air-disinfection against survival fraction measurements, and the first measurement-informed modelling approach to estimating far-UVC susceptibility of viruses in air. As well as demonstrating the reliability of the code, at circa 70% higher, our findings indicate that aerosolized human coronaviruses are significantly more susceptible to far-UVC than previously thought.


Subject(s)
Coronavirus 229E, Human/radiation effects , Coronavirus Infections/prevention & control , Coronavirus OC43, Human/radiation effects , Disinfection/methods , Ultraviolet Rays , Virus Inactivation/radiation effects , Aerosols/isolation & purification , Air Microbiology , COVID-19/prevention & control , Computer Simulation , Coronavirus 229E, Human/isolation & purification , Coronavirus 229E, Human/physiology , Coronavirus OC43, Human/isolation & purification , Coronavirus OC43, Human/physiology , Disinfection/instrumentation , Equipment Design , Humans , Models, Biological
7.
Sci Rep ; 11(1): 19910, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1462025

ABSTRACT

Face masks are a primary preventive measure against airborne pathogens. Thus, they have become one of the keys to controlling the spread of the COVID-19 virus. Common examples, including N95 masks, surgical masks, and face coverings, are passive devices that minimize the spread of suspended pathogens by inserting an aerosol-filtering barrier between the user's nasal and oral cavities and the environment. However, the filtering process does not adapt to changing pathogen levels or other environmental factors, which reduces its effectiveness in real-world scenarios. This paper addresses the limitations of passive masks by proposing ADAPT, a smart IoT-enabled "active mask". This wearable device contains a real-time closed-loop control system that senses airborne particles of different sizes near the mask by using an on-board particulate matter (PM) sensor. It then intelligently mitigates the threat by using mist spray, generated by a piezoelectric actuator, to load nearby aerosol particles such that they rapidly fall to the ground. The system is controlled by an on-board micro-controller unit that collects sensor data, analyzes it, and activates the mist generator as necessary. A custom smartphone application enables the user to remotely control the device and also receive real-time alerts related to recharging, refilling, and/or decontamination of the mask before reuse. Experimental results on a working prototype confirm that aerosol clouds rapidly fall to the ground when the mask is activated, thus significantly reducing PM counts near the user. Also, usage of the mask significantly increases local relative humidity levels.


Subject(s)
COVID-19/prevention & control , Inhalation Exposure/prevention & control , Masks , Particulate Matter/isolation & purification , Respiratory Protective Devices , SARS-CoV-2/isolation & purification , Aerosols/isolation & purification , Air Microbiology , Equipment Design , Filtration/instrumentation , Humans , Mobile Applications , Particle Size , Smart Materials/chemistry , Smartphone
8.
Sci Rep ; 11(1): 19403, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1447324

ABSTRACT

The ongoing worldwide outbreak of COVID-19 has set personal protective equipment in the spotlight. A significant number of countries impose the use of facemasks in public spaces and encourage it in the private sphere. Even in countries where relatively high vaccination rates are achieved at present, breakthrough infections have been frequently reported and usage of facemasks in certain settings has been recommended again. Alternative solutions, including community masks fabricated using various materials, such as cotton or jersey, have emerged alongside facemasks following long-established standards (e.g., EN 149, EN 14683). In the present work, we present a computational model to calculate the ability of different types of facemasks to reduce the exposure to virus-laden respiratory particles, with a focus on the relative importance of the filtration properties and the fitting on the wearer's face. The model considers the facemask and the associated leakage, the transport of respiratory particles and their accumulation around the emitter, as well as the fraction of the inhaled particles deposited in the respiratory system. Different levels of leakages are considered to represent the diversity of fittings likely to be found among a population of non-trained users. The leakage prevails over the filtration performance of a facemask in determining the exposure level, and the ability of a face protection to limit leakages needs to be taken into account to accurately estimate the provided protection. Filtering facepieces (FFP) provide a better protection efficiency than surgical and community masks due to their higher filtration efficiency and their ability to provide a better fit and thus reduce the leakages. However, an improperly-fitted FFP mask loses a critical fraction of its protection efficiency, which may drop below the protection level provided by properly-worn surgical and community masks.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Filtration/instrumentation , Masks/standards , SARS-CoV-2 , Aerosols , Air Microbiology , COVID-19/virology , Disease Transmission, Infectious/prevention & control , Filtration/standards , Humans , Inhalation Exposure/prevention & control , Models, Theoretical , Particle Size
9.
PLoS One ; 16(9): e0258151, 2021.
Article in English | MEDLINE | ID: covidwho-1443858

ABSTRACT

BACKGROUND: Few studies have quantified aerosol concentrations of SARS-CoV-2 in hospitals and long-term care homes, and fewer still have examined samples for viability. This information is needed to clarify transmission risks beyond close contact. METHODS: We deployed particulate air samplers in rooms with COVID-19 positive patients in hospital ward and ICU rooms, rooms in long-term care homes experiencing outbreaks, and a correctional facility experiencing an outbreak. Samplers were placed between 2 and 3 meters from the patient. Aerosol (small liquid particles suspended in air) samples were collected onto gelatin filters by Ultrasonic Personal Air Samplers (UPAS) fitted with <2.5µm (micrometer) and <10 µm size-selective inlets operated for 16 hours (total 1.92m3), and with a Coriolis Biosampler over 10 minutes (total 1.5m3). Samples were assayed for viable SARS-CoV-2 virus and for the viral genome by multiplex PCR using the E and N protein target sequences. We validated the sampling methods by inoculating gelatin filters with viable vesicular stomatitis virus (VSV), and with three concentrations of viable SARS-CoV-2, operating personal samplers for 16hrs, and quantifying viable virus recovery by TCID50 assay. RESULTS: In total, 138 samples were collected from 99 rooms. RNA samples were positive in 9.1% (6/66) of samples obtained with the UPAS 2.5µm samplers, 13.5% (7/52) with the UPAS 10µm samplers, and 10.0% (2/20) samples obtained with the Coriolis samplers. Culturable virus was not recovered in any samples. Viral RNA was detected in 15.1% of the rooms sampled. There was no significant difference in viral RNA recovery between the different room locations or samplers. Method development experiments indicated minimal loss of SARS-CoV-2 viability via the personal air sampler operation.


Subject(s)
Aerosols/isolation & purification , Air Microbiology , COVID-19/virology , SARS-CoV-2/isolation & purification , Animals , COVID-19/epidemiology , COVID-19/transmission , Chlorocebus aethiops , Hospitals , Humans , Long-Term Care , RNA, Viral/isolation & purification , Vero Cells
11.
J Aerosol Med Pulm Drug Deliv ; 34(5): 293-302, 2021 09.
Article in English | MEDLINE | ID: covidwho-1440594

ABSTRACT

Background: The precaution of airborne transmission of viruses, such as influenza, SARS, MERS, and COVID-19, is essential for reducing infection. In this study, we applied a zero-valent nanosilver/titania-chitosan (nano-Ag0/TiO2-CS) filter bed, whose broad-spectrum antimicrobial efficacy has been proven previously, for the removal of viral aerosols to minimize the risk of airborne transmission. Methods: The photochemical deposition method was used to synthesize the nano-Ag0/TiO2-CS antiviral material. The surface morphology, elemental composition, and microstructure of the nano-Ag0/TiO2-CS were analyzed by a scanning electron microscopy/energy dispersive X-ray spectroscopy and a transmission electron microscopy, respectively. The MS2 bacteriophages were used as surrogate viral aerosols. The antiviral efficacy of nano-Ag0/TiO2-CS was evaluated by the MS2 plaque reduction assay (PRA) and filtration experiments. In the filtration experiments, the MS2 aerosols passed through the nano-Ag0/TiO2-CS filter, and the MS2 aerosol removal efficiency was evaluated by an optical particle counter and culture method. Results and Conclusions: In the MS2 PRA, 3 g of nano-Ag0/TiO2-CS inactivated 97% of MS2 bacteriophages in 20 mL liquid culture (2 ± 0.5 × 1016 PFU/mL) within 2 hours. The removal efficiency of nano-Ag0/TiO2-CS filter (thickness: 6 cm) for MS2 aerosols reached up to 93%. Over 95% of MS2 bacteriophages on the surface of the nano-Ag0/TiO2-CS filter were inactivated within 20 minutes. The Wells-Riley model predicted that when the nano-Ag0/TiO2-CS filter was used in the ventilation system, airborne infection probability would reduce from 99% to 34.6%. The nano-Ag0/TiO2-CS filter could remain at 50% of its original antiviral efficiency after continuous operation for 1 week, indicating its feasibility for the control of the airborne transmission.


Subject(s)
Air Filters , Air Microbiology , Chitosan/chemistry , Filtration/instrumentation , Inhalation Exposure/prevention & control , Levivirus/isolation & purification , Metal Nanoparticles , Silver/chemistry , Titanium/chemistry , Aerosols , COVID-19/prevention & control , COVID-19/transmission , Equipment Design , Humans , Inhalation Exposure/adverse effects , Levivirus/pathogenicity , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
12.
JAMA Netw Open ; 4(9): e2126447, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1432337

ABSTRACT

Importance: Scalable programs for school-based SARS-CoV-2 testing and surveillance are needed to guide in-person learning practices and inform risk assessments in kindergarten through 12th grade settings. Objectives: To characterize SARS-CoV-2 infections in staff and students in an urban public school setting and evaluate test-based strategies to support ongoing risk assessment and mitigation for kindergarten through 12th grade in-person learning. Design, Setting, and Participants: This pilot quality improvement program engaged 3 schools in Omaha, Nebraska, for weekly saliva polymerase chain reaction testing of staff and students participating in in-person learning over a 5-week period from November 9 to December 11, 2020. Wastewater, air, and surface samples were collected weekly and tested for SARS-CoV-2 RNA to evaluate surrogacy for case detection and interrogate transmission risk of in-building activities. Main Outcomes and Measures: SARS-CoV-2 detection in saliva and environmental samples and risk factors for SARS-CoV-2 infection. Results: A total of 2885 supervised, self-collected saliva samples were tested from 458 asymptomatic staff members (mean [SD] age, 42.9 [12.4] years; 303 women [66.2%]; 25 Black or African American [5.5%], 83 Hispanic [18.1%], 312 White [68.1%], and 35 other or not provided [7.6%]) and 315 students (mean age, 14.2 [0.7] years; 151 female students [48%]; 20 Black or African American [6.3%], 201 Hispanic [63.8%], 75 White [23.8%], and 19 other race or not provided [6.0%]). A total of 46 cases of SARS-CoV-2 (22 students and 24 staff members) were detected, representing an increase in cumulative case detection rates from 1.2% (12 of 1000) to 7.0% (70 of 1000) among students and from 2.1% (21 of 1000) to 5.3% (53 of 1000) among staff compared with conventional reporting mechanisms during the pilot period. SARS-CoV-2 RNA was detected in wastewater samples from all pilot schools as well as in air samples collected from 2 choir rooms. Sequencing of 21 viral genomes in saliva specimens demonstrated minimal clustering associated with 1 school. Geographical analysis of SARS-CoV-2 cases reported district-wide demonstrated higher community risk in zip codes proximal to the pilot schools. Conclusions and Relevance: In this study of staff and students in 3 urban public schools in Omaha, Nebraska, weekly screening of asymptomatic staff and students by saliva polymerase chain reaction testing was associated with increased SARS-CoV-2 case detection, exceeding infection rates reported at the county level. Experiences differed among schools, and virus sequencing and geographical analyses suggested a dynamic interplay of school-based and community-derived transmission risk. Collectively, these findings provide insight into the performance and community value of test-based SARS-CoV-2 screening and surveillance strategies in the kindergarten through 12th grade educational setting.


Subject(s)
COVID-19 Testing/methods , COVID-19/epidemiology , Environmental Monitoring , Mass Screening , Program Evaluation , Schools , Urban Population , Adolescent , Adult , Air Microbiology , COVID-19/virology , Female , Humans , Male , Middle Aged , Nebraska , Pandemics , Pilot Projects , Polymerase Chain Reaction , Risk Assessment , SARS-CoV-2 , Saliva , School Teachers , Students , Waste Water/virology
13.
Phys Rev Lett ; 127(9): 094501, 2021 Aug 27.
Article in English | MEDLINE | ID: covidwho-1429386

ABSTRACT

Turbulent puffs are ubiquitous in everyday life phenomena. Understanding their dynamics is important in a variety of situations ranging from industrial processes to pure and applied science. In all these fields, a deep knowledge of the statistical structure of temperature and velocity space-time fluctuations is of paramount importance to construct models of chemical reaction (in chemistry) and of condensation of virus-containing droplets (in virology and/or biophysics) and optimal mixing strategies in industrial applications. As a matter of fact, results of turbulence in a puff are confined to bulk properties (i.e., average puff velocity and typical decay or growth time) and date back to the second half of the 20th century. There is, thus, a huge gap to fill to pass from bulk properties to two-point statistical observables. Here, we fill this gap by exploiting theory and numerics in concert to predict and validate the space-time scaling behaviors of both velocity and temperature structure functions including intermittency corrections. Excellent agreement between theory and simulations is found. Our results are expected to have a profound impact on developing evaporation models for virus-containing droplets carried by a turbulent puff, with benefits to the comprehension of the airborne route of virus contagion.


Subject(s)
Models, Biological , Models, Theoretical , Air Microbiology , Biophysical Phenomena , COVID-19/transmission , COVID-19/virology
14.
J Med Microbiol ; 70(9)2021 Sep.
Article in English | MEDLINE | ID: covidwho-1429385

ABSTRACT

To the best of our knowledge to date there are no scientific studies specifically investigating whether the SARS-CoV-2 virus is present in the air or on the various surfaces in the school environment. The aim of this study was to determine if SARS-CoV-2 is present on various high touch surfaces and in the air across the elementary, middle and high schools in the Chester County of Pennsylvania, USA. One hundred and fifty surface swab samples and 45 air samples were analysed for the presence of the virus. All the samples tested were negative for the presence of SARS-CoV-2. The results indicate that the spread of the virus through contact and through air in the school buildings across the USA is highly unlikely.


Subject(s)
Air Microbiology , COVID-19 , Pandemics/prevention & control , SARS-CoV-2/isolation & purification , Schools , COVID-19/transmission , COVID-19/virology , Humans , Pennsylvania/epidemiology
15.
Environ Monit Assess ; 193(10): 626, 2021 Sep 05.
Article in English | MEDLINE | ID: covidwho-1411741

ABSTRACT

A simplified model has been devised to estimate the falling dynamics of severe acute respiratory syndrome corona-virus 2 (SARS-CoV-2)-laden droplets in an indoor environment. Our estimations were compared to existing literature data. The spread of SARS-CoV-2 is closely coupled to its falling dynamics as a function of respiratory droplet diameter (1 to 2000 µm) of an infected person and droplet evaporation. The falling time of SARS-CoV-2 with a respiratory droplet diameter of about 300 µm from a height of 1.7 m remained almost the same among the Newtonian lift equation, Stokes's law, and our simplified model derived from them so as to account for its evaporation. The evaporative demand peaked at midday which was ten times that at midnight. The evaporating droplets [Formula: see text] 6 µm lost their water content rapidly, making their lifetimes in the air shorter than their falling times. The droplets [Formula: see text] 6 µm were able to evaporate completely and remained in the air for about 5 min as droplet nuclei with SARS-CoV-2.


Subject(s)
Aerosols , Air Microbiology , Environmental Monitoring , SARS-CoV-2 , Humans , SARS-CoV-2/isolation & purification
16.
Med Hypotheses ; 146: 110396, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1386308

ABSTRACT

We have reviewed a considerable amount of recent scientific papers relating inflammation caused by air pollution with chronic and severe medical conditions. Furthermore, there are evidences relating organ inflammation caused by not only outdoor long-term but also short-term inhaled radioisotopes contained in high polluted air or in household natural radioactive background aerosols, in addition to SARS-COV-2 attached to bioaerosols, which are related with a worst evolution of severe acute respiratory syndrome patients. Reactive oxygen species (ROS) production induced by the interaction with environmental ionizing radiation contained in pollution is pointed out as a critical mechanism that predispose mainly to elder population, but not excluding young subjects, presenting previous chronic conditions of lung inflammation or neuroinflammation, which can lead to the most serious consequences.


Subject(s)
Air Pollution, Radioactive/adverse effects , COVID-19/etiology , Climate Change , Inflammation/etiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , SARS-CoV-2/pathogenicity , Aerosols , Air Microbiology , COVID-19/mortality , Causality , Humans , Inflammasomes/metabolism , Inflammasomes/radiation effects , Models, Biological , Nervous System Diseases/etiology , Pandemics , Particle Size , Particulate Matter/adverse effects , Pneumonia/etiology
18.
Environ Sci Pollut Res Int ; 28(40): 56376-56391, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1384555

ABSTRACT

It is important to know whether SARS-CoV-2 is spread through the air conditioning systems. Taking the central air conditioning system as an example, we analyze the mechanism and potential health risk of respiratory virus transmission in air-conditioned rooms and propose a method to study the risk of virus transmission in central air conditioning systems by investigating the data from medical experiments. The virus carrying capacity and the decay characteristics of indoor pathogen droplets are studied in this research. Additionally, the effects of air temperature and relative humidity on the virus survival in the air or on surfaces are investigated. The removal efficiency of infectious droplet nuclei by using an air conditioning filter was then determined. Thus, the transmission risk during the operation of the centralized air conditioning system is evaluated. The results show that the indoor temperature and humidity are controlled in the range of 20-25 °C and 40-70% by central air conditioning during the epidemic period, which not only benefits the health and comfort of residents, but also weakens the vitality of the virus. The larger the droplet size, the longer the viruses survive. Since the filter efficiency of the air conditioning filter increases with the increase in particle size, increasing the number of air changes of the circulating air volume can accelerate the removal of potential pathogen particles. Therefore, scientific operation of centralized air conditioning systems during the epidemic period has more advantages than disadvantages.


Subject(s)
Air Conditioning , Air Pollution, Indoor , COVID-19 , Viruses , Air Microbiology , Air Pollution, Indoor/analysis , COVID-19/transmission , Humans , Humidity , SARS-CoV-2 , Virus Diseases/transmission
19.
PLoS One ; 16(6): e0253096, 2021.
Article in English | MEDLINE | ID: covidwho-1388924

ABSTRACT

BACKGROUND: In light of the role that airborne transmission plays in the spread of SARS-CoV-2, as well as the ongoing high global mortality from well-known airborne diseases such as tuberculosis and measles, there is an urgent need for practical ways of identifying congregate spaces where low ventilation levels contribute to high transmission risk. Poorly ventilated clinic spaces in particular may be high risk, due to the presence of both infectious and susceptible people. While relatively simple approaches to estimating ventilation rates exist, the approaches most frequently used in epidemiology cannot be used where occupancy varies, and so cannot be reliably applied in many of the types of spaces where they are most needed. METHODS: The aim of this study was to demonstrate the use of a non-steady state method to estimate the absolute ventilation rate, which can be applied in rooms where occupancy levels vary. We used data from a room in a primary healthcare clinic in a high TB and HIV prevalence setting, comprising indoor and outdoor carbon dioxide measurements and head counts (by age), taken over time. Two approaches were compared: approach 1 using a simple linear regression model and approach 2 using an ordinary differential equation model. RESULTS: The absolute ventilation rate, Q, using approach 1 was 2407 l/s [95% CI: 1632-3181] and Q from approach 2 was 2743 l/s [95% CI: 2139-4429]. CONCLUSIONS: We demonstrate two methods that can be used to estimate ventilation rate in busy congregate settings, such as clinic waiting rooms. Both approaches produced comparable results, however the simple linear regression method has the advantage of not requiring room volume measurements. These methods can be used to identify poorly-ventilated spaces, allowing measures to be taken to reduce the airborne transmission of pathogens such as Mycobacterium tuberculosis, measles, and SARS-CoV-2.


Subject(s)
Air Microbiology , Air Pollution, Indoor/prevention & control , COVID-19/prevention & control , COVID-19/transmission , Models, Biological , SARS-CoV-2 , Ventilation , COVID-19/epidemiology , Humans
20.
PLoS One ; 16(1): e0244983, 2021.
Article in English | MEDLINE | ID: covidwho-1388896

ABSTRACT

Here we look into the spread of aerosols indoors that may potentially carry viruses. Many viruses, including the novel SARS-CoV-2, are known to spread via airborne and air-dust pathways. From the literature data and our research on the propagation of fine aerosols, we simulate herein the carryover of viral aerosols in indoor air. We demonstrate that a lot of fine droplets released from an infected person's coughing, sneezing, or talking propagate very fast and for large distances indoors, as well as bend around obstacles, lift up and down over staircases, and so on. This study suggests equations to evaluate the concentration of those droplets, depending on time and distance from the source of infection. Estimates are given for the safe distance to the source of infection, and available methods for neutralizing viral aerosols indoors are considered.


Subject(s)
COVID-19/transmission , Disease Transmission, Infectious/prevention & control , Aerosols/analysis , Air Microbiology , Air Pollution, Indoor/analysis , COVID-19/metabolism , COVID-19/virology , Cough , Disease Transmission, Infectious/statistics & numerical data , Dust , Humans , Models, Theoretical , SARS-CoV-2/isolation & purification , Sneezing/physiology , Virus Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...